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Chapter 1

Introduction

The number of neurons in the central nervous system, consisting of the brain
and the spinal cord, is astronomically large. The cerebral cortex in humans
contains between 20 and 30 billion neurons (Mountcastle, 1998), with about
20, 000–40, 000 neurons per cubic millimeter. Even if we want to consider as
small a subsystem as possible, we are facing network sizes on the order of
many thousand neurons: Cortical neurons receive thousands of inputs from
other neurons, at least half of them from local circuitry (not more than half
a millimeter in diameter) in which any neuron is connected to any other
neuron with a probability of about 10%, independent of distance. Thus, if
we want to study circuits in the central nervous system, we are immediately
confronted with large spiking neural networks.

A common approach to study the dynamics of such systems is to restrict
the description of neuronal outputs to averaged quantities, i.e., firing rates,
instead of describing precisely timed action potentials. In these models, the
firing rate as a function of input current is given by hand. There are good
arguments in favor of such firing-rate models as compared to (naive ways of
using) spiking models (see, e.g., Dayan and Abbott, 2001, chapter 7).

However, there are several limitations to rate models, and we overcome
some of them with the two different kinds of spiking models presented in this
work.

While it is easier to solve certain aspects of network dynamics analytically
using rate models, it is often difficult to provide physiological interpretations
of introduced parameters. For example, there has been success in construct-
ing a rate model with qualitative similar dynamics as the observed sponta-
neous activity in the chick spinal cord, but it remains unclear how these can

1



2 CHAPTER 1. INTRODUCTION

emerge from neuron properties. Here, we suggest a different solution based
on a new synapse model, and show which physiological mechanisms could
account for the dynamics by simulating and analyzing a full spiking neural
network.

Some fundamental questions about cortical dynamics cannot be addressed
by rate-models at all. Most notably, they cannot say anything about firing
statistics. Cortical neurons fire highly irregularly in response to sensory stim-
uli, with firing statistics close to that of a completely random Poisson process.
How is the irregularity in neuronal firing controlled by intrinsic network pa-
rameters? What are the mechanisms behind irregular firing? We present
a complete mean-field theory that allows us to describe firing statistics, in-
cluding firing correlations, for spiking cortical network models in a completely
self-consistent manner. The theory is implemented by a numerical algorithm
that can be used for any kind of neuron and synapse model. With these
tools, one can for the first time provide both qualitative and quantitative
explanations for observed firing statistics – and even for conductance- and
membrane potential fluctuations – of cortical neurons in vivo, without the
need to make assumptions about statistics of the neuronal input.

Organization of the thesis

The main part of this work is presented in a collection of papers reprinted
at the end of the thesis.

In the first part, we summarize the theories and the main results in a
closed form, using a consistent notation and pointing to interdependencies
where applicable. In the sections corresponding to the two shorter papers,
we provide important additional information about the models and present
more detailed results. Generally, we discuss the results for all the models
in greater detail and from a more global perspective. This way, we hope to
make the implications of our findings more accessible to readers who are not
actively involved in research in this field.



Chapter 2

General background

This chapter serves as an introduction to biological concepts and terminol-
ogy, as far as they are relevant to both understanding and motivating the
particular modeling approaches in this work.

2.1 Neurons and synapses

Neurons are the functional building blocks of nervous systems. They are
connected via synapses to form networks. Figure 2.1 shows a cartoon rep-
resentation of a typical neuron in the brain. Neurons receive inputs from
other neurons in the network via postsynaptic terminals, which are located
on specialized structures called dendrites, or directly on the cell body (soma).
The inputs can either be excitatory or inhibitory and their effects are inte-
grated in the soma. Provided that there is enough excitation, an action
potential is created (one says the neuron “fires”) that propagates in form a
stereotyped voltage pulse (also called a “spike”) through the axon to presy-
naptic terminals. Spikes that arrive at presynaptic terminals cause a release
of neurotransmitter onto postsynaptic terminals of further neurons.

A few numbers serve to illustrate how densely connected neurons can be:
The cell body of a typical cortical neuron ranges in diameter from about
10 to 50 micrometer and the dentritic tree receives, on average, 2 synaptic
inputs per micrometer. The dendritic length density is about 400 meter per
cubic millimeter, and the axonal length density is even higher, 3200 meter
per cubic millimeter (Rolls and Deco, 2002).

Neurons are not in direct contact with each other (with the exception of

3



4 CHAPTER 2. GENERAL BACKGROUND

Figure 2.1: Structure of a neuron. The neuron receives inputs from other
neurons via its postsynaptic terminals on the dendrite. The resulting in-
put currents get integrated at the soma. If the soma gets sufficiently de-
polarized, an action potential (“spike”, “firing”) is initiated and propa-
gated through the axon to the presynaptic terminals, which then provide
inputs to postsynaptic terminals of other neurons. Figure adapted from
http://vv.carleton.ca/ neil/neural/neuron-a.html

electrical synapses, which we do not consider here because they play a minor
role in the networks that we consider in this work) – they influence each
other only via spikes. For this reason, spikes are considered the carriers of
information in neural networks, and individual neurons are characterized by
their spike responses to, e.g., sensory stimuli.

Like all cells in the body, neurons are surrounded by a cell membrane con-
sisting of a lipid-bilayer, interspersed with proteins. The membrane-spanning
proteins of interest to us here are called ion-channels and receptors. We will
come back to receptors later, when we have a closer look at the functionality
of synapses. The membrane acts as an insulator, separating two liquid, elec-
trically conducting media. Ion channels in the membrane allow specific ions
to pass. There are concentration differences of various ion species between
the inside and the outside of the cell, leading to a partial flow of ions to
the other side until the force due to the concentration gradient is counterbal-
anced by the resulting voltage gradient in the other direction: an equilibrium
potential is established that keeps the membrane polarized at the so-called
resting potential, unless disturbed by input currents. The resting potential
of cortical neurons is on the order of −70 mV.

Action potentials are initiated and propagated by voltage sensitive ion
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channels that open (that is, they change their conductance) only when the
membrane potential gets sufficiently depolarized, i.e., when the membrane
potential reaches a threshold value (“the firing threshold”).

Hodgkin and Huxley (1952) were the first to provide a detailed model
of membrane-potential kinetics, including a precise description of how the
action potential is caused by (active) changes in membrane conductance to
Na+ and K+ ions.

However, membrane-potential kinetics in the subthreshold regime can be
approximated well by a passive R-C circuit with a battery that maintains
the resting potential u0. The well-insulating lipid bilayer determines the ca-
pacitance C and the ion channels that are (passively) open below threshold
determine the resistance, resp., conductance g. Thus, for membrane poten-
tials u < θ, with a threshold θ obey in this simplified description the equation
of motion

C
du

dt
+ g(u− u0) = I, (2.1)

where I stands for an input current. The membrane acts thus as a leaky
integrator of the current I. The shape of an action potential is a stereotyped,
very brief (with a duration of about 1 millisecond) pulse that depolarizes the
membrane to slightly positive values, followed by a re-polarization close to
rest. This behavior can be simplified by “inserting” such a pulse when the
neuron fires, followed by a reset of the membrane potential to rest anytime
the membrane potential reaches threshold. This model is called a leaky
integrate-and-fire (LIAF) neuron.

We will use such LIAF neurons in all our spiking neural network models
described in this work, and we measure the membrane potential relative to
the resting potential u0 in units of the threshold θ (i.e., with our re-scaled u,
we have u0 = 0 and θ = 1):

τ
du

dt
= −u+ Î , (2.2)

with Î = I/g and τ = C/g. The input-output relationship (firing rate as a
function of input current), also called the “gain function” can be calculated
for a constant current Î0 > θ as

r =

[
τ ln

(
Î0

Î0 − θ

)]−1

, (2.3)
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or, with an absolute refractory period τr for which we keep the neuron at
reset-level after spiking:

r =

[
τr + τ ln

(
Î0

Î0 − θ

)]−1

. (2.4)

We have mentioned above that neurons affect other neurons by emitting
spikes, which cause a release of neurotransmitter onto postsynaptic terminals.
The arrival of the neurotransmitter is sensed at the postsynaptic terminal
via receptor molecules, which are the second kind of transmembrane pro-
teins (beside ion channels) that are import for our purposes. These receptors
then open transiently (a few milliseconds for the types we consider here) ion
channels. In fact, the types we consider here are receptors and ion channels
at the same time, so-called ligand-gated ion channels. Opening ion channels
means increasing the conductance for the species of ions they are selective to,
causing current to either flow in (excitation) or out (inhibition). In the cor-
tex, neurons that release the neurotransmitter glutamate have an excitatory
effect on postsynaptic neurons, because glutamate causes the opening of ion
channels for cations that have a reversal (= equilibrium) potential around
0 mV. Thus, they have a depolarizing effect on the postsynaptic neuron,
bringing its membrane potential closer to threshold. Neurons that release
GABA (γ-aminobutyric acid) cause opening of Cl− channels, making the
postsynaptic neuron more depolarized because Cl− has a reversal potential
that lies below the resting value.

We can model the effect of synaptic input to the integrate-and-fire model
(2.2) by writing the current Î as gs(t)(u − Vs) where gs(t) describes the
temporal synaptic conductance change due to opening of the ion channels,
and where Vs is the reversal potential of that particular synapse:

τ
du

dt
= −u− gs(t)(u− Vs) (2.5)

A recent study by Meffin et al. (2004) shows that integrate-and-fire neu-
rons with such conductance-based synapses have very similar dynamics to
Hodgkin-Huxley model neurons regarding firing statistics and membrane po-
tential statistics for neuronal inputs like those for cortical neurons in vivo.
Thus, for large networks, this simple model offers a computationally very
economic and yet physiologically faithful choice for simulating cortical dy-
namics.
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2.2 Cerebral cortex

The cerebral cortex comprises about 60–65% of the volume of the human
brain, of which it is the outer mantle. If spread flat, it would occupy about
2,600 cm2 (Mountcastle, 1998). It is thus no surprise that it has to be highly
convoluted in order to fit into our skulls. The connectivity within the cortex is
remarkably similar across all areas and modalities. Vertically, it is organized
into six distinct layers, usually referred to by roman numbers. Sensory input
reaches the primary sensory areas mostly via layer IV. The local cortical
networks (cortical columns) modeled later in this work may be more precisely
referred to as layer IV of these cortical columns. When we speak of a local
network or a cortical column, we mean circuits consisting of neurons that
have similar firing characteristics in response to, e.g., sensory input. Such
neurons are arranged close to each other, within a diameter not more than
half a millimeter in horizontal directions (parallel to the surface) but which
are arranged in vertical columns, thus the name. Within that length scale,
neurons receive similar external input, have similar recurrent connectivity
and fire in a similar manner. A correct description of neuronal input has
therefore to be consistent with the output of the neuron itself. This is what
we mean by the important concept of self-consistency, which will be central
for the mean-field models developed in this work.

External input (all long-range input) to cortical neurons is always exci-
tatory, whether from sensory sources, from lower brain centers or from more
distant cortical areas. In the same vein, all long-range “output” of corti-
cal processing is excitatory. Inhibitory neurons are only locally connected.
Thus, only excitatory neurons carry signals that are received (“seen”) by
other brain centers.

We will frequently refer to the visual cortex, which is positioned on the
occipital lobe on the back of our brain (when we consider the eyes as posi-
tioned in the front). Visual stimuli enter the eye in form of light waves, which
are transformed to neuronal signals by the retina on the back of the eyeball.
From there, the signals get propagated to neurons in the lateral geniculate
nucleus (LGN), which in turn project to the primary visual cortex (V1).

Much research has been done to characterize primary cortical neurons by
their firing responses to visual stimuli. Many neurons are orientation sensi-
tive, that is, they respond strongest to visual stimuli of a specific orientation,
and with gradually decreasing firing rates as the orientation becomes less op-
timal. Neurons with the same orientation preference are arranged vertically
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Figure 2.2: Regular arrangements of orientation columns in primary visual
cortex. The indications L and R stand for left and right eye, respectively.
Figure adopted from http://webvision.med.utah.edu/imageswv/columns.jpg

(into orientation columns) and neurons for different orientations are topo-
graphically organized in a regular manner. Figure 2.2 shows such a regular
arrangement of varying orientations, which would be found in the cortex
along the boundaries of ocular dominance stripes, i.e., where neurons on one
side react strongest to the left eye and those on the other side to the right
eye, or vice versa. A set of orientation columns of all possible orientations
reacting to the same place in the visual field (i.e., they share the same re-
ceptive field) are referred to as an orientation hypercolumn. Since it is not
possible to arrange orientation columns in a continuously regular manner (so
that orientation preferences change continuously from one position to the
next) on the two-dimensional surface of the cortex for topological reasons,
there must be necessarily singularities in the arrangement. These are called
pinwheel centers, and an entire pinwheel is a circular arrangement of orien-
tation columns around a pinwheel center. We will refer to pinwheels later,
when we discuss possible extensions to our simple orientation hypercolumn
model.

Finally, we want to point out some important experimental findings from
measurements of visual cortical neurons in vivo that have been topics of
intense research in the field of neuroscience:

• Spiking is highly irregular in response to repeated visual stimuli. The
spike count variance tends to be somewhat higher than that for a Pois-
son process.

• Cortical neurons in vivo exhibit a threshold-linear gain function, in
contrast to what we have derived in (2.3) and (2.4); however, the same
neurons in vitro show gain functions more similar to (2.4).
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• Cortical neurons in vivo, especially during stimulation, but also “at
rest” have much higher input conductances than the same neurons in
vitro, making their characteristic membrane time constant shorter than
expected from single-neuron investigations.

We can provide plausible explanations for underlying mechanisms of all
these facts with help of the mean-field models that we present in this work.
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Chapter 3

New synapse model –
Spontaneous activity in the
developing chick spinal cord

Spontaneous activity is a common phenomenon in most, if not all, developing
networks of the central nervous system (CNS) (for reviews see O’Donovan,
1999; Wenner and O’Donovan, 2001). This activity is remarkably similar
for such diverse network architectures as the hippocampus, the retina, and
the spinal cord. It comprises recurring episodes, containing one or several
cycles of high network activity, that alternate with silent phases. All of these
developing networks have in common that they are hyperxcitable due to the
fact that synaptic contacts that are inhibitory in the mature system (such
as GABA-ergic synapses) are functionally excitatory during these stages of
development.

There is widespread consensus that spontaneous activity plays important
roles in the development of the nervous system itself, as well as of muscles,
bones and other tissues that are affected by, e.g., the resulting spontaneous
movements. Despite its universality and its importance, the mechanisms
and dynamics underlying spontaneous activity are still poorly understood.
While there has been some success in modeling episodic activity employing
mutually independent fast and slow (activity-dependent) network depression
(Tabak et al., 2000, 2001), it is not clear which physiological mechanisms
should account for these dynamics, nor is it clear how these dynamics can
emerge from neuron properties (we are not aware of successful attempts to
implement these dynamics in full network models). In addition, these mod-

11



12 CHAPTER 3. NEW SYNAPSE MODEL – CHICK SPINAL CORD

Figure 3.1: Spontaneous activity recorded from chick spinal cord. Episodes of
cyclic activity alternate with silent phases. The cycling frequency decreases
during the course of an episode. Figure adopted from Tabak et al. (2000).

els ascribe slow activity-dependent depression a causal role in terminating
episodes, which is not reconcilable with experimental data, as we will discuss
later.

Here, we propose a novel way of thinking about the problem by stress-
ing the consequence of the fact that all these networks are hyperexcitable:
once they get activated, positive feedback creates an avalanche of activity
that drives them to their physiological limits. Then, the weakest or least
resourceful parts of the system will necessarily set a boundary. Looking at
the problem in this way, we can convince ourselves that the limited number
of vesicles in the tiny presynaptic boutons of CNS nerve terminals (see, e.g.,
Harata et al., 2001) are likely to pose a major limitation on this run-away
effect. For this reason, we introduce a new model for presynaptic dynamics
that accounts for the limited number of readily available vesicles (Lerchner
and Rinzel, 2004). The model is in agreement with recent findings on vesicle
release mechanisms and structural organization of presynaptic CNS termi-
nals. We show how the proposed synaptic dynamics can account for the
generic qualitative features of spontaneous activity.

In this study, we concentrate on data obtained from the developing chick
spinal cord, because it is probably the best studied developing system with
respect to spontaneous network activity (see, e.g., Ho and O’Donovan, 1993;
Chub and O’Donovan, 1998; Fedirchuk et al., 1999; Wenner and O’Donovan,
2001; Chub and O’Donovan, 2001). Reported episode durations are 5–90
sec, cycle rates 0.1–2 Hz, and the length of the silent phases 2–30 min. An
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example of a recording, taken from Tabak et al. (2000), is shown in Figure 3.1.
We can summarize the properties that should be explained by a model

that successfully reproduces the dynamics of spontaneous activity in the
developing chick spinal cord as follows:

1. Recurring spontaneous initiation and termination of episodes

2. Cyclic activity within episodes

3. Cycle frequency decreases during episode

4. Shorter episodes start with lower cycle frequency; episode length can
be predicted well by initial cycle frequency

5. Positive correlation between episode duration and length of preceding
silent phase; episode termination is thus deterministic

6. Initiation of episodes is stochastic

7. Episodes have an absolute refractory period: not possible to evoke an
episode prematurely for about 100 sec after termination of an episode

8. Slow synaptic depression sets in after the end of an episode and reaches
its peak about 1–1.5 minutes later

9. Network architecture not important (same phenomenon in retina, hip-
pocampus, and many other networks)

All of these features can be accounted for by our model, as we will discuss
below.

3.1 Model and methods

The presynaptic terminal of a synapse contains vesicles of neurotransmitters.
It is known that these vesicles do not wait there in an unstructured way for
getting released. Instead, only vesicles that are in the active zone, already
docked to the cell membrane or close to it, can be released in response to
an incoming action potential. There is also a larger storage of vesicles that
lie dormant behind the active zone, which have to be transported into the
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Figure 3.2: New synapse model. The presynaptic terminal contains two
pools of neurotransmitter vesicles: an active pool A of readily releasable
vesicles and a larger storage pool S. Vesicles in S can only be released after
transition to A. The speed of transition, parameterized by τA, slows down
with decreasing sizes of S. Unless S is filled up to its maximum, it gets
replenished at a constant but slow rate, determined by the time constant τS.
Also indicated is the partial recycling of released neurotransmitter. While
recycling plays an important role in mature synapses, it is not included in
our model for reasons outlined in the text.

active zone before they can get released. We will refer to these collectively
as the storage pool S.

In our synapse model, we term the vesicles that can be readily released
(in response to an action potential entering the presynaptic terminal) the
active pool A. See Figure 3.2 for a cartoon representation of our synapse
model.

Readily releasable vesicles (RRVs) in the real synapse are those that are
currently in the active zone (less than 10 in the small CNS nerve terminals)
plus those that can be quickly recruited to the active zone. The total number
of vesicles in CNS nerve terminals is estimated between 200 and 520 (Harris
and Sultan, 1995; Schikorski and Stevens, 1997). A fraction of about 15–20%
of these are readily releasable (Harata et al., 2001). These RRVs undergo exo-
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endocytotic recycling, that is, part of the neurotransmitter that gets released
into the synaptic cleft is re-uptaken to allow quick refilling of emptied RRVs.
In the mature synapse, vesicle recycling is a fast process, which explains
why the small number of RRVs does not seem to pose a major limitation
under “normal, mature” working conditions in the brain (Harata et al., 2001).
We argue that vesicle recycling gets more efficient during development, for
reasons that we will discuss later. Our model represents an early stage in
the development of the chick spinal cord (embryonic day 7.5), so we do not
model vesicle recycling explicitly here.

In our model, we assume that A has a maximum capacity Amax. Pro-
vided that A is not empty, a presynaptic spike causes a vesicle release and
the size of A gets reduced by one. The effect of the released vesicle in terms
of postsynaptic input current is scaled by the momentary size of A relative
to Amax. This is a way of implementing the averaged effect of reduced re-
lease probability for smaller numbers of available vesicles (Harris and Sultan,
1995).

Unless A is filled up to its maximum, it gets constantly, but slowly, re-
plenished by transition of vesicles from the storage pool S into A, with a
rate that decreases with decreasing sizes of S. We formalize this concept
by defining a vesicle transition variable Vtr that represents the fraction of a
vesicle that is about to be transferred:

τA
dVtr(t)

dt
=

{
S + Smax if (A < Amax) ∧ (S > 0)
0 else,

(3.1)

where Smax is the maximum capacity of the storage pool S. Actual transfer
of a (whole) vesicle (S → S − 1 and A → A + 1) only occurs when Vtr

exceeds 1, after which Vtr → Vtr − 1. Thus, the pool sizes are confined to
integer numbers. The role of Smax on the right-hand-side of (3.1) is to ensure
that the transition rate remains finite for vanishing sizes of S, so that S can
be completely depleted under excessive stimulation.

The storage pool gets replenished with “new” vesicles via a metabolic
process that is much slower than the transition from S to A. Similar to the
transition process, we keep track of a vesicle generation variable Vgen that
obeys

τS
dVgen(t)

dt
=

{
const. if S < Smax

0 if S = Smax,
(3.2)

with a time constant τS � τA. A new vesicle is “created” whenever Vgen

exceeds 1, by setting S → S + 1 and Vgen → Vgen − 1.
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In addition to the presynaptic modeling described above, we need to
account for the experimentally observed postsynaptic depression. This kind
of activity-dependent depression is a slow time-delayed process. Even though
the postsynaptic depression is caused by the high activity during the episodes
(as experiments confirm), there is almost no depression at the beginning of
the following silent phase. The slow depression sets in steeply at the end of
the episode, reaching its maximum only 1–1.5 min later, then relaxing slowly
back over the entire silent phase.

We model the time-delayed postsynaptic depression by a mechanism that
integrates over the firing activity of the postsynaptic neuron within a time
window on the order of tens of seconds, and which takes effect after a further
delay of the same order. Even though experimental studies indicate that
somatic activity seems not to be required for the depression (Fedirchuk et al.,
1999), postsynaptic activity certainly is. Since high postsynaptic activity
and high somatic activity always coincide in both our model and during
spontaneous activity in chick spinal cord, we do not introduce a qualitative
error by making this simplification. The somatic activity within the time
window is then compared with a “neutral range” of activity. If the activity
exceeds the neutral range, then the synaptic strength is scaled down, if it is
lower, it is scaled up. Within the neutral range, no adjustments are made to
the postsynaptic sensitivity.

During the time course of an episode, the activity in the chick spinal
cord remains at a low level, which we model by random firing at a low rate
for several seconds. Preliminary investigations indicate that this activity
need not be modeled explicitly if the network is big enough (thousands of
neurons, which is a realistic number for the real network) with sufficient
variation in the synapse parameters. Due to computational limitations, we
include this detail in the current form of the model to allow smaller network
sizes (hundreds of neurons).

Spontaneous activity (as the name suggests) does not require external
stimulation to be initiated. Prolonged intervals without network – and thus
synaptic – activity are accompanied by more and more frequent spontaneous
synaptic events, peaking in frequency and amplitude before the spontaneous
start of an episode (O’Donovan, 1999). We model these events as random
spontaneous vesicle release (Poisson noise) that increases in frequency in the
absence of action potential-triggered release.

The model network consists of randomly connected leaky integrate-and-
fire neurons without external input. All synaptic contacts are excitatory,
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governed by the pre- an postsynaptic dynamics outlined above.

3.2 Results

Our model network generated spontaneous episodic activity with the same
qualitative features as observed in the developing chick spinal cord. We
varied the size of the network (from a few hundred to a few thousands of
neurons) and the connection probabilities (between 10% and 100%, i.e., full
connectivity) and could find dynamics like those shown in Figure 3.3 for all
cases investigated.

To compare our results with extracellular recordings such as that shown
in Figure 3.1, we needed to calculate the time course of the overall network
activity. We did this by averaging the number of spikes per millisecond (ms)
over a sliding time window of 20 ms. The maximum average activity amounts
then to 0.25 due to our choice of an absolute refractory period equal to 3 ms.

Figure 3.3 shows a typical time course of both a spontaneous and an
evoked episode, aligned with corresponding synaptic states from a randomly
chosen synapse in the network. In the top panel of the figure, the overall
network activity is plotted, showing the episodic nature with cyclic activity
within episodes. The first of the two episodes started spontaneously and
the decrease in cycle frequency can be clearly seen. The second episode
was evoked prematurely by transiently driving the membrane potential of
all neurons above threshold. The duration of the early evoked episode is
shorter. We generally found a positive correlation between episode length
and length of the preceding silent phase. In addition, early evoked episodes
always started with lower cycle frequencies than spontaneous episodes.

The states of the storage pool size and the active pool size in the second
and third panel of Figure 3.3 show the intimate relationship between pool
depletion (episodes terminate when the storage pool is emptied, cycles ter-
minate when the active pool is emptied) and network activity in our model.

Finally, in the bottom panel of the figure, the corresponding time course
of the delayed postsynaptic depression of a sample neuron is shown. This de-
pression variable is a multiplicative factor of the effective synaptic strength.
Thus, a value of 1 means no depression. We allowed this variable to as-
sume slightly negative values, which reproduced qualitatively the observed
hyperpolarization of membrane potentials shortly after an episode (data not
shown).
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3.3 Discussion

We showed how spontaneous activity in developing networks, which is re-
markably similar across network architectures and neuron types involved,
can emerge from a few general principles of synaptic dynamics. The key idea
is exhaustion of presynaptic vesicle pools due to the extreme, self-sustaining
activation in these recurrently connected hyperexcitable networks. We in-
troduced a new synapse model that aims to capture recent findings about
vesicle release properties in a quantitative manner.

In our chick spinal cord model, episodes are triggered by increasing amounts
of spontaneously released synaptic vesicles in absence of stimulation. The
length of an episode is determined by the overall amount of vesicles at the
start of the episode, while repeated depletion of readily releasable vesicles
produces the cyclic nature within episodes. In contrast to previous modeling
approaches, slow post-synaptic depression does not terminate episodes; its
importance with respect to the observed activity pattern lies in removing
network hyperexcitability after episodes.

We deliberately kept the description of the dynamics of all processes in-
volved as simple as possible, to illustrate the generality of the model: not
the fine details of the processes involved are important but the overall func-
tional organization together with the relative sizes of time constants and pool
sizes. We showed how such a setup can naturally account for the observed
dynamics.

We will now review the list of experimental findings for the developing
chick spinal cord that need to be accounted for, and discuss for each point
briefly the explanation provided by our model. To distinguish predictions
from known data (according to the experimental studies cited above), we
mark experimentally established data with (EE).

1. Recurring spontaneous initiation and termination of episodes Episodes
are spontaneously initiated by the combination of increasing synap-
tic noise in absence of activity (EE), together with decreasing post-
synaptic depression (EE). Episodes are spontaneously terminated by
exhaustion of the vesicle reservoir in the presynaptic terminal.

2. Cyclic activity within episodes Cyclic activity within episodes is caused
by repeated exhaustion of readily releasable vesicles. When the active
pools of most synapses are exhausted, network activity drops to a low
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level until sufficiently refilled active pools can support a new avalanche
once again.

3. Cycle frequency decreases during episode Increasing transition times
from the shrinking storage pool to the active pool during the course
of an episode causes slower refilling of the active pool up to the point
where a new avalanche of activity can be started.

4. Shorter episodes start with lower cycle frequency; episode length can
be predicted well by initial cycle frequency Episodes are shorter when
the storage pool is only partly refilled at the beginning of the episode.
Since the transition rate from storage pool to active pool is determined
by the size of the storage pool, we can predict the size of the storage
pool (and thus the remaining length of the episode) from the cycle
frequency.

5. Positive correlation between episode duration and length of preceding
silent phase; episode termination is thus deterministic At the begin-
ning of the silent phase, the storage pools are empty. Thus, the length
of the preceding silent phase determines the size of the storage pool at
the end of the silent phase. Using the above arguments, we can thus
predict when the episode terminates from the length of the silent phase.

6. Initiation of episodes is stochastic The time for spontaneous initiation
depends on the coincidence of sufficiently many spontaneous synaptic
events, which in turn are stochastic.

7. Episodes have an absolute refractory period: not possible to evoke an
episode prematurely for about 100 sec after termination of an episode
Transient loss of hyperexcitability after the end of an episode (EE)
prevents avalanches of activity, even under stimulation.

8. Slow synaptic depression sets in after the end of an episode and reaches
its peak about 1–1.5 minutes later Slow synaptic depression is activity-
dependent but time delayed. Models that assume a causal role for the
termination of episodes cannot account for this fact.

9. Network architecture not important (same phenomenon in retina, hip-
pocampus, and many other networks) Provided that avalanches of ex-
cessive network activity can spread quickly enough, the synaptic ex-
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haustion processes will be sufficiently synchronized to determine the
network dynamics.

Our model can indirectly account for the change in episode dynamics
during development of the chick spinal cord. It is known that the length of
episodes increases with age of the embryo, and the activity between cycles
remains higher. We expect such an effect in our model, if we incorporate
vesicle recycling that gets more efficient with the age of the synapse.

There is little doubt that the existence of spontaneous activity is impor-
tant for the development of neural systems and the entire organism. How-
ever, it has not been clear why it has exactly the dynamics that are observed.
These dynamics are surprisingly stable even when the network is disrupted:
it gets re-established with almost the same time course after recovery (Chub
and O’Donovan, 1998). The recovery to practically the same activity pat-
tern led to speculations that the particular shape of the time course must
be important – why else would the system take the efforts re-establish this
particular pattern? Our answer to this question in light of our model is sur-
prisingly simple: The exact time course may not be important, or at least not
actively regulated; rather, it might be difficult to avoid such a pattern given
the excessive self-stimulation in hyperexcitable networks in combination with
the dynamics of limited synaptic resources.
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Figure 3.3: Network activity, pool sizes, and postsynaptic depression. Top
panel: Network activity with two episodes. The first episode initiated
spontaneously, while the second one was evoked prematurely, resulting in a
shorter episode length. Second panel: Time course of the storage pool size
S. Episode termination is caused by depletion of the storage pool. Third
panel: Time course of the active pool A. Avalanches in network activity
cause depletion of A, which in turn stops the avalanche and the cycle. Bottom
panel: Slow, time-delayed postsynaptic depression. The postsynaptic de-
pression removes the hyperexcitability from the network, causing an effective
refractory period for initiating new avalanches.
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Chapter 4

Mean field models – Cortical
networks

Irregular firing of cortical neurons in response to sensory stimuli is a well
studied phenomenon (for studies in visual cortex see, e.g., Heggelund and
Albus, 1978; Dean, 1981; Vogels et al., 1989; Shadlen and Newsome, 1998;
Gershon et al., 1998). Firing statistics tend to be close to that of a com-
pletely random Poisson process, raising the question where this apparent
noisiness stems from. Considering known anatomical properties of the cor-
tex (high connectivity) and physiological properties of cortical neurons (long
passive time constant, absence of noisy behavior in vitro), the picture gets
even more puzzling, and simple neuron models, like point integrate-and-fire
neurons, seem to be inadequate to capture cortical dynamics (Softky and
Koch, 1993). Shadlen and Newsome (1998) pointed out that a balance be-
tween excitation and inhibition, with an average membrane potential just
below threshold and firing caused by fluctuations in the membrane poten-
tial, can account for such irregular firing even for integrate-and-fire neurons
with long membrane time constants. That such a balance with stable irreg-
ular firing can naturally emerge from a simple feedback mechanism (without
the need to fine-tune any parameters) between excitation and inhibition was
first shown by van Vreeswijk and Sompolinsky (1996, 1998) for a mean-field
model of a network of binary neurons. Amit and Brunel (1997a,b); Brunel
(2000) investigated a similar model, developing a mean-field theory for a
balanced network of integrate-and-fire neurons and showing the existence of
stable asynchronous states with irregular firing. However, these mean-field
theories cannot address the question of how the amount of firing irregularity

23
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(or, more generally, the nature of firing correlations) is controlled by intrin-
sic network parameters: The van Vreeswijk-Sompolinsky treatment does not
use spiking neurons and the Amit-Brunel treatment is not self-consistent re-
garding firing correlations because it assumes the neuronal input to be white
noise. It was first shown in a preliminary study by Hertz et al. (2003) how a
balanced all-inhibitory network with excitatory external input can be treated
fully self-consistently, using the systematic formulation of mean-field theory
due to Fulvi Mari (2000). Here, we show how to extend this basic model
in several ways: In Section 4.1, we analyze a model of a generic cortical
column with an excitatatory and an inhibitory population, stimulated by
(excitatory) external input. Then, in Section 4.2, we show how to include
conductance-based synapses in the self-consistent description of a cortical
column. The analysis and results for this model allows us to elucidate how
firing irregularity and high-conductance states of cortical neurons in vivo
are related. Finally, in Section 4.3, we include functional architecture into
the mean-field description and study a model of an orientation hypercolumn
in primary visual cortex. We will see how several, seemingly independent
experimental findings can be accounted for by the model. In addition, we
make quantitative predictions on tuning properties of both neuronal firing
and neuronal input currents.
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Figure 4.1: Structure of the single-column model.

4.1 Cortical column: current-based synapses

In our first cortical network model, we connect neurons with “current-based
synapses”, i.e., we model the effect of a presynaptic spike as a stereotyped
postsynaptic input current. Since we consider synapses with dynamics that
are fast compared to the membrane time constant of our integrate-and-fire
neurons, we simplify the spike response to a jump in the membrane potential
by an amount that is determined by the “strength” of the synapse.

4.1.1 Model and methods

The network model for the cortical column consists of an excitatory popula-
tion of size N1 and an inhibitory one of size N2. The neurons are connected
randomly so that any given neuron in population a ∈ {1, 2} receives synap-
tic input from any other neuron of population b ∈ {1, 2} with probability
Kb/Nb. In our calculations, we take this probability to be 10%, independent
of both the source population b and the target population a. (Throughout
this chapter, we use the indices a and b to denote target and source pop-
ulation, respectively.) The strengths of the resulting synapse Jabij between

presynaptic neuron j and postsynaptic neuron i is taken to be Jab/
√
Kb with

Jab of order 1, respectively Jabij = 0 if there is no connection. With this
scaling, the mean input from the (on average) Kb presynaptic neurons of
population b is of order Kb/

√
Kb =

√
Kb, but the fluctuations are of order

1 (cf. van Vreeswijk and Sompolinsky, 1996), the same order as the distance
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between reset and threshold of our model integrate-and-fire neurons. While
this scaling will turn out to be convenient for our balanced network model,
it also translates to synaptic strengths in the right biological ballpark, given
(the realistic range of) Kb on the order of a few thousand.

The cortical column receives excitatory input from an external population
indexed by 0. Completely analogously as for the intracortical connections,
we assume random connectivity and synapses of strength Ja0/

√
K0.

We can then write the subthreshold dynamics of the membrane potentials
as

duai
dt

= −u
a
i

τ
+

2∑

b=0

Nb∑

j=1

Jabij S
b
j (t), (4.1)

where Sbj (t) =
∑
s δ(t − tsjb) is the spike train of neuron j in population

b. For simplicity, we chose the membrane time constant τ to be the same
for all neurons, but we sampled the firing thresholds from a narrow normal
distribution with mean 1 and standard distribution 0.1. The reset is fixed at
zero. We do not implement an absolute refractory period since we consider
a low-rate regime only.

Because of the dilute random connectivity, each neuron receives a high
number of uncorrelated inputs (van Vreeswijk and Sompolinsky, 1998), pro-
vided that the network operates in a low rate regime. We can thus employ
the central limit theorem and describe the input as a Gaussian random pro-
cess, for which we need to determine the mean and correlation function self-
consistently (see Fulvi Mari, 2000, for a formal proof of this general mean
field approach).

In this chapter, we will consider stationary firing rates only, to keep
the notation and explanations more transparent – without loss of general-
ity. There is no qualitative difference between stationary and non-stationary
rates mainly for two reasons: First, the theory is general enough that no
re-formulation is needed to include non-stationary rates. Replacing time av-
eraged quantities (e.g., rates rb) in the following treatment with their time
dependent counterparts (e.g., rb(t)) yields the more general time-dependent
case. Second, the highly connected network converges to the balanced state
very quickly, with stability eigenvalues proportional to

√
K0 (van Vreeswijk

and Sompolinsky, 1998). Thus, in the mean-field limit of K0 →∞, the net-
work follows changes in the mean input instantaneously, which keeps it in
a quasi-stationary state. For biologically realistic values of finite, but large
connectivity (as in our numerical calculations) the network is still fast enough
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to follow smooth rate changes on the millisecond scale. However, more care
needs to be taken for calculating the solutions numerically with the algorithm
described below, as discussed in Lerchner et al. (2004c).

To separate the mean of the currents from their fluctuations, it is con-
venient to apply such separations to the description of both the synaptic
weights Jabij and the spike trains Sbj (t) in (4.1):

Jabij = Jabij + δJabij (4.2)

Sbj (t) = rb + δrbj + δSbj (t). (4.3)

Throughout this chapter, we use the bar-notation for averaging over neuron
populations, which will always apply to the running index j. Here, rb =
rbj = 1/Nb

∑
j r

b
j is the average rate of the neurons in population b. The

difference between this average rate and the rate of the individual neuron
j is denoted δrbj . These two components are both static, describing time-
averaged quantities. The temporal fluctuations of the spike train and their
possible correlations in time are captured by the third term on the right-
hand side of (4.3), δSbj (t). With help of this separation, we can calculate a
description of the recurrent currents of the following form:

Irec
a (t) =

2∑

b=1

Jab

[√
Kbrb +

√
1−Kb/Nb

((
(rbj)

2
)1

2 xb + ξb(t)

)]
(4.4)

We have dropped the neuron index i because such a statistical description of
the input current reduces the network problem to single neuron problems, one
for each population. For the external currents, a similar formulation – albeit
simpler, because of the pure feed-forward nature – can be made. Following we
will provide a qualitative description of Equation (4.4). (For a more detailed
account with a slightly different notation see Lerchner et al., 2004c). The
square brackets on the right-hand side of (4.4) contain three different terms.
The first one is the population mean,

√
Kbrb. It is much larger (of order√

Kb � 1) than the other two, which are both of order 1. In the second
term, xb is a unit-variance random number, causing a random offset of the

mean. This offset is scaled by the two factors
√

1−Kb/Nb and (rbj)
2, which

reflect the facts that individual neurons vary in their number of inputs and
that there is a distribution of rates among the input neurons. Thus, sampling
values for xb corresponds to sampling individual neurons in the population.
We will come back to this concept when we discuss how the input currents can
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be evaluated numerically. Finally, the third term in the square brackets of
(4.4) describes the fluctuations in the recurrent input current, together with
their temporal correlations. The expression ξb(t) stands for a realization of
a Gaussian random process obeying

〈ξb(t)ξb(t′)〉 = Cb(t− t′), (4.5)

where Cb(t− t′) denotes the average autocorrelation function of the fluctua-
tions in the spike trains of neurons in population b, given by

Cb(t− t′) =
1

Nb

Nb∑

j=1

〈δSbj (t)δSbj (t′)〉. (4.6)

With the operation 〈·〉 we mean averaging over “trials”, i.e., realizations of
random processes, such as stochastic spike trains. Like the static fluctua-
tions in the mean input, these dynamic fluctuations also contain the scaling

factor
√

1−Kb/Nb that reflects the random connectivity. For a fully con-
nected network this factor is zero because then there can be no randomness in
the connectivity. Therefore, the temporal fluctuations in the input currents
(and thus ultimately in the neuronal firing) are due to the static fluctua-
tions in the connectivity. Thus, this model offers an explanation of how
the apparent noisy firing statistics of cortical neurons in vivo may originate
in the quenched disorder of the cortical connectivity, without requiring any
stochastic processes.

The balance condition

As mentioned earlier, we are interested in finding self-consistent solutions
to this model for low rates. In analyzing the recurrent input currents (4.4),
we have observed that the means of both the excitatory and the inhibitory
inputs are large, of order

√
Kb � 1 for b = 1, 2, respectively. If either of

the inputs dominates, the neuron would fire at extremely high rates (dom-
inant excitation) or not at all (dominant inhibition). The only non-trivial
case is a balance of the mean input currents so that the mean membrane po-
tential stays just below threshold, with occasional threshold crossings of the
membrane potential caused by the fluctuations in the input. Such a balance
condition has to apply to the overall input, including the external one, and
can be formalized using our mean field description as

2∑

b=0

Jab
√
Kbrb = O(1). (4.7)
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At this point, it may appear that such a balance requires a delicate fine
tuning of the parameters, specifically of the synaptic strengths Jab. This,
however, turns out not to be the case. It is due to the negative feedback
within the highly recurrently connected cortical network that such a balance
is established dynamically for a large range of inputs without being sensitive
on exact values of Jab, as long as certain constraints on their relative sizes
are met (such as that cortical inhibition has to be stronger than cortical
excitation). This robustness with respect to values of the synaptic strengths
is one of the reasons why balanced network models can offer such an attractive
explanation for cortical dynamics.

Within our model, the balance condition is simply a consequence of our
requirement to find self-consistent solutions for the rates and the correlation
functions. We can use the formulation of the balance condition (4.7) to
calculate analytically good estimates for the rates. This is in general not
possible for the correlation functions, for which we will instead present a
numerical procedure below. (The numerical procedure also provides exact
solutions for the rates and the rate fluctuations). To estimate the rates, we
can divide (4.7) by

√
K0 and neglect the resulting term of O(1/

√
K0) on the

right-hand side of the equation to get

2∑

b=0

Ĵabrb = 0, (4.8)

with Ĵab = Jab
√
Kb/K0. These are two linear equations in the two unknowns

ra, a = 1, 2, with the solution

ra =
2∑

b=1

[Ĵ
−1

]abJb0r0, (4.9)

where Ĵ−1 is the inverse of the 2× 2 matrix with elements Ĵab, a, b = 1, 2.

Numerical procedure

To find self-consistent solutions for the complete mean field model, we employ
an iterative algorithm that may be summarized as follows:

1. Start with initial estimates for the firing statistics, i.e., the rates, the
rate fluctuations, and the correlation functions. For the rate estimates,
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we use the approximation derived above. We neglect the rate fluctu-
ations in the first step and use a white noise approximation for the
correlation functions.

2. Use the estimates of the firing statistics to compute many realizations
(trials) of the Gaussian random processes describing the input currents.
By drawing new values for xb in (4.4) from trial to trial, we effectively
sample over the population, which is important to finally obtain self-
consistent solutions for the rate fluctuations.

3. Simulate single neurons driven by the input currents calculated in step 2
and collect their firing statistics.

4. Calculate improved estimates of the rates, rate fluctuations and corre-
lations with help of the statistics derived in step 3.

5. Repeat steps 2–4 until convergence.

Such an algorithm was first used to calculate the remanent magnetization
of a mean field model for spin glasses by Eisfeller and Opper (1992).

After convergence of the iterative procedure, we know the solutions for
the population statistics. These can then be used to collect firing statistics
from individual neurons by keeping the values for xb fixed over trials.

4.1.2 Results

We are interested in the question of which model parameters, and ultimately
which dynamic mechanisms, control the amount of irregularity in the neu-
ronal firing. One major finding of the present study is that firing irregularity
depends mainly on the strength of the synapses: stronger synapses generally
lead to higher irregularity in spike counts, irrespective whether excitatory,
inhibitory, or both kind of synapses are increased in strength. For this rea-
son, we keep the relative sizes between excitation and inhibition fixed in this
brief presentation of the main results and refer to Lerchner et al. (2004c)
for a more detailed treatment. Here, we use the following values for the
parameters Jab: (

J11 J12

J21 J22

)
= Js

(
0.5 −2
1 −2

)
, (4.10)
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Figure 4.2: Firing irregularity depends on synaptic strengths. Fano fac-
tors are plotted as a function of the overall factor for synaptic strengths Js.
Stronger synapses generally lead to higher Fano factors. There is a smooth
transition from subpoissonian (F < 1) over Poisson (F = 1) to superpossio-
nian (F > 1) firing statistics.

for the relative sizes of the intracortical connections, and J10 = Js · 1,
J20 = Js · 0.5 for the connections from the external population. We vary
the scaling factor Js to study the effect of synaptic overall-strength on the
amount of firing irregularity. To characterize the irregularity in firing itself,
we use the Fano factor F , defined as the variance in spike count divided by
the mean spike count. For a Poisson process F = 1, while F 6= 1 always
implies temporal correlations in the spike times: F > 1 (“superpoissonian”
statistics) indicates a tendency towards “bursty” spiking behavior, and F < 1
(“subpoissonian”) indicates a tendency towards well-separated spikes.

Figure 4.2 shows that stronger synapses, reflected by increasing values of
the synaptic scaling factor Js, lead to higher Fano factors. The transition
from subpossionian to superpossonian behavior is smooth, without any spe-
cial role for F = 1, the temporally uncorrelated case. Fano factors obtained
from measurements on cortical neurons in vivo tend to lie in the same range.

In Figure 4.3 we compare data obtained from experiments with numerical
results of our model. The experimental data shown in the left panel are from
Gershon et al. (1998), where monkeys were presented with flashed, stationary
visual patterns, and spike statistics from neurons in primary visual cortex
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Figure 4.3: Approximately linear relationship between the logarithm of the
spike count variance and logarithm of the mean spike count in both exper-
iment and model. Left panel: Experimental data obtained from a single
neuron in monkey V1 in vivo. Each point reflects the statistics obtained for
a specific stimulus (a flashed stationary pattern). The sampling error due
to the limited number of trials can account for all of the variation from the
regression line. Right panel: Numerical results for three different values of
overall synaptic strength Js (red circles: 1.25, black stars: 0.75, and blue
triangles: 0.375), varying the external input rate. For Js = 1.25 the data
look qualitatively like those from the experiments shown in the left panel.

(V1) were collected. The logarithm of the spike count variance is plotted
against the logarithm of the spike count mean for a single (“typical”) neu-
ron. Each data point reflects the statistics obtained for a specific stimulus.
The following general trends can be seen: First, the ratio between variance
and mean (i.e., the Fano factor F ) is systematically higher than one, which
is typical for spike statistics obtained from neurons in V1. Second, the rela-
tionship between the log-variance and the log-mean is approximately linear,
indicating a good fit of the variance by a power law function of the mean
count. In the right panel of Figure 4.3 we show numerical results of our
model for three different values of overall synaptic strength (Js = 1.25, 0.75,
and 0.375), varying the input rate r0. For Js = 1.25 the data look qualita-
tively like those from the experiments. The approximate linear relationship
is evident for all three cases with the exception of a deviation towards lower
variance at high rates that is caused by an increasing role of refractoriness
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in limiting the possible variability of interspike intervals.

4.1.3 Discussion

We showed how to do a complete mean-field theory for a network of integrate-
and-fire neurons that allows one to calculate self-consistently not only the
firing rates, but also the correlation functions of the firing. The solutions
can in general not be calculated analytically, so we complemented the theory
with a numerical procedure for solving the equations. This treatment makes
it possible to quantify the amount of irregularity as a function of network
parameters. For the specific model analyzed here, the firing irregularity is
mainly controlled by the strength of the synapses.

Why do stronger synapses lead to higher irregularity in spike counts, as
shown in Figure 4.2? The membrane potential performs a random walk in
a quadratic potential, resulting in an approximately Gaussian distribution.
There is an absorbing barrier at threshold θ = 1 and re-injection at the reset
level (equal to 0). Between any two spikes, the membrane potential has to
“diffuse on top of a drift” from the reset to the threshold. While the distance
between reset and threshold is fixed, the step size of the random walk is scaled
by the synaptic strengths: each input spike from a neuron in population b to a
neuron in population a causes a jump in the membrane potential proportional
to Jab. The drift is always in the direction of the bottom of the quadratic
potential, where the mean of the membrane potential distribution lies. Since
Jab controls the step size, it also controls the width of the distribution. The
dependence can be shown by integrating the fluctuating part δIabi (t) of the
input current Iabi (t) (see Equation (4.4)). Defining

δIabi (t) = Jab
√

1−Kb/Nbξ
ab
i (t), (4.11)

we can calculate the variance of the membrane potential distribution as

〈δVab(t)δVab(t′)〉 = J2
ab(1−Kb/Nb)

∫
dt1dt2e

−(t−t1)/τe−(t′−t2)/τCb(t, t
′),

(4.12)
where we have ignored the threshold effect, which makes no qualitative differ-
ence in the low-rate limit we are interested in. Note that the width is scaled
by Jab but not by the number of inputs – only the connection probability
Kb/Nb enters. So we see that stronger synapses result in bigger step sizes
of the random walk and thus in broader membrane potential distributions.
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The mean of the distribution is always lower than threshold. For a narrow
distribution, it lies close to threshold (above reset), while it can lie well below
reset for a wide distribution.

Let us first consider the case of weak synapses – and why they lead to more
regular spike trains (subpoissonian firing statistics): Between any two spikes,
the membrane potential has to drift from the reset up to the mean of the
distribution close to threshold before the small steps of the random walk can
drive the neuron above threshold. Thus, a threshold crossing immediately
after reset is extremely unlikely, which leads to an effective relative refractory
period after each spike, reflected in lower Fano factors.

We now consider strong synapses, which lead to more irregular spike
counts (superpoissonian statistics): In this case the step size of the random
walk is so big that the membrane potential can bridge the distance between
reset and threshold with only a few steps. This leads to a higher probabil-
ity for very short intervals, i.e., a tendency towards bursting. Considering
a fixed rate, the higher number of shorter interspike intervals is necessarily
counterbalanced by a higher number of longer intervals. These longer inter-
vals are due to a drift away from the threshold after reset, since the mean of
the distribution lies below reset in this case, as mentioned above.

Our analytical estimation of the firing rates (4.9) tells us that there is a
linear relationship between the strength of the external input (firing rate r0)
and the firing rate ra of the cortical neurons for both excitatory (a = 1) and
inhibitory (a = 2) neurons. Figure 4.4 shows simulation results confirming
this kind of dependence. It has been known for a long time that cortical neu-
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Figure 4.4: Linear relationship between firing rate of the external input and
output rate for both excitatory and inhibitory neurons.
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rons exhibit such a linear input-output relationship, but the mechanisms be-
hind this somewhat surprising property (considering the many non-linearities
in the system) have not been clear. Consequently, models of cortical networks
– especially on the level of rate models – have frequently assumed a threshold-
linear gain function for single cortical neurons, despite the fact that single
neurons in vitro do not show such behavior. Clearly, we are observing a
network effect here. At first sight, it may seem that there must be a very
precise computational system at work that manages to compensate all the
non-linearities involved in the system. However, our model provides a much
simpler answer to this puzzle (the same answer was already obtained by van
Vreeswijk and Sompolinsky, 1996, 1998, for their model using binary neu-
rons). We have derived this property, reflected in Equation (4.9), from the
balance condition, which in turn expresses the quasi-steady state achieved by
the negative feedback between excitation and inhibition. (Note that we do
not impose balance artificially – it is a consequence of the dynamics, not an
assumption entering the model.) Negative feedback is thus a necessary ingre-
dient, but there is a more fundamental reason for the linearity. It is rooted
in the fact that the sum over a high number of (practically) uncorrelated
random processes always results in a random process with very simple prop-
erties. This fact is captured mathematically in what is known as the Central
Limit Theorem, which lies at the very heart of our mean-field description.

Following the argumentation above, our model not only provides possi-
ble explanations for several – seemingly independent – properties of cortical
dynamics. It also provides a straightforward answer to a basic issue that
has been discussed heatedly between neuroscientists for many years: “Why
is neuronal firing in the cerebral cortex noisy? Is it really noisy? Or do we
just not understand the complexity of the neuronal code and the timing of
single spikes is important?” The maybe surprising answer in the light of our
theory is:

Neocortical neurons fire noisily because it makes the computation much
simpler and much more robust.

However, such an answer raises more questions. Where does the noise
come from? Individual neurons behave perfectly deterministic when removed
from the brain and put into a dish. Where are the noisy processes in the
brain? The solution provided by our model is:

There is no need for noisy processes. The brain could be perfectly deter-
ministic and still appear to be noisy.

What anatomists observe is “static noise” in the connectivity. What we
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conclude is that the network converts it into apparent temporal noise in the
neuronal firing. We say ’apparent’ because in our network there is not really
noise at all: what we are facing is a state of deterministic chaos, indistin-
guishable from “real” noise for all practical purposes (such as collecting firing
statistics from neurons in the visual cortex in response to repeated stimuli).

We like to point out that the very concept of “static noise” (or “random
connectivity”, as we normally refer to it) is only meaningful in systems with
many parts. The same is true for the validity of using the Central Limit
Theorem as a base of description. This means that the study of large spiking
neural networks can offer explanations for cortical dynamics that cannot be
derived from models with only a limited number of neurons.
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4.2 Cortical column:

conductance-based synapses

In the following mean field model, we will use a conductance-based descrip-
tion for the effect of a presynaptic spike on the target neuron. This will
add more realism because the amount of input current that enters the cell
through ion channels in the postsynaptic membrane really depends on the
momentary voltage across that membrane.

Even though we still consider synaptic dynamics that are fast compared
to the (passive) membrane time constant of our integrate-and-fire neurons,
we will now include a more detailed description of the synaptic dynamics. In
contrast to the neuron model with current-based synapses, it will turn out
that now the effective membrane time constant can become so short that
even fast synaptic dynamics have strong influence on the firing statistics.

4.2.1 Model and methods

We use the same model for the generic cortical column as described above
for the case of current-based synapses, i.e., the same random connectivity
between the two populations and from the external population. The main
difference is the effect of presynaptic spikes on the target neurons. With
conductance-based synapses, the equation of motion for the subthreshold
membrane potentials becomes

duai (t)

dt
= −gLu

a
i (t)−

2∑

b=0

Nb∑

j=1

gabij (t)(uai (t)− Vb). (4.13)

The conductance gL pertains to the “leaky” part of the integrate-and-fire
neuron. It therefore corresponds to the inverse of the membrane time con-
stant τ in (4.1). The synaptic reversal potentials are denoted Vb, where
V0 = V1 is higher than threshold (excitatory synapses) and V2 is below the
normalized resting potential of 0 (inhibitory synapses). The time-dependent
conductances gabij (t) describe the postsynaptic conductance changes of neuron
i in population a in response to the presynaptic spike train Sbj (t) of neuron
j in population b:

gabij (t) =
g0
ab√
Kb

∫ t

−∞
dt′K(t− t′)Sbj (t′), (4.14)
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Figure 4.5: Diagram of the network structure and of the algorithm for the
conductance-based model. The importance of coloring the noise correctly is
indicated by the shapes of the autocorrelations in the lower part of the figure
(Presyn., input cond., and Output).

if there is a connection between the two neurons, otherwise gabij (t) = 0. The
parameters g0

ab are taken to be of order 1, which results in an analogous scaling
of the synaptic strengths as in the current-based model. The filter kernel
K(t) describes the temporal shape of the conductance change in response to
a single spike. We take it to be

K(t) =
1

τ2 − τ1

(
e−t/τ2 − e−t/τ1

)
, (4.15)

where τ1 is the average opening time and τ2 > τ1 is the average closing time
of the ion channels in the postsynaptic terminal. Figure 4.6 shows the shape
of the kernel K(t) given by (4.15) for τ1 = 1 ms and two different values of
τ2. Note that the integral over the kernel is normalized to 1.
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Figure 4.6: Shape of the conductance kernel K(t) defined in (4.15) for a
characteristic opening time of τ1 = 1 ms and two different values of the
closing time τ2. .

We can derive a mean field description of this model using the same prin-
ciples and techniques as for the one with current-based synapses if we perform
the separation of mean and fluctuations on the conductances g0

ab instead of on
the weights Jab (see Equation (4.2)). We then obtain statistical descriptions
of the overall “input conductances” gab(t) and the network problem becomes
once again one for single neurons that obey

dua(t)

dt
= −gLua(t)−

2∑

b=0

gab(t)(ua(t)− Vb). (4.16)

Similar to the input currents (4.4) in the current-based model, we can calcu-
late the following statistical description of the time dependent conductances:

gab(t) = g0
ab

[√
Kbrb +

√
1−Kb/Nb

((
(rbj)

2
)1

2 xb + ξb(t)

)]
. (4.17)

There is a difference between ξb(t) in (4.4) and (4.17) due to the synaptic
dynamics that we have included in the conductance-based model. Now we
need the correlation functions of the synaptically filtered spike trains to ob-
tain the Gaussian random processes describing the temporal fluctuations and
correlations:

〈ξab(t)ξab(t′)〉 = C̃b(t− t′) (4.18)

with

C̃b(t− t′) =
∫ t

−∞
dt1K(t− t1)

∫ t

−∞
dt2K(t− t2)Cb(t1 − t2). (4.19)
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The balance condition

As for the model with current-based synapses, we are looking for low-rate
solutions, for which the mean input currents must nearly cancel. We cannot
read off these currents directly from the mean field description (4.17), as we
could do for the analogous case for the current-based synapses (4.4). Now the
input currents depend on the momentary levels of the membrane potential
ua(t). However, in a low-rate steady state we can replace ua(t) by its time-
averaged mean value ua and use (4.16) to arrive at a balance condition for
the conductance-based model.

2∑

b=0

g0
ab

√
Kb(ua − Vb) = O(1), (4.20)

where we have absorbed the small contribution of the leakage term into the
right-hand side of this equation. In order to solve it for getting estimates of
the firing rates, we first need to know the mean membrane potential ua. We
can approximate it by the firing threshold θa for reasons that will become
clear shortly. Then the solution can be found exactly analogously to the
previous model, and we get

ra =
2∑

b=1

[Ĵ−1
eff ]abJ̃

eff
b0 r0, (4.21)

where J̃eff
ab = g0

ab(Vb − θa), Ĵeff
ab = J̃eff

ab

√
Kb/K0, and Ĵ−1

eff is the inverse of the

matrix with the elements Ĵeff
ab , a, b = 1, 2 (cf. Equation (4.9)).

High conductance states

Leaky integrate-and-fire (LIAF) neurons with conductance-based synapses
are qualitatively different from LIAF neurons with current-based synapses.
Generally, the membrane time constant of the neuron is inversely propor-
tional to the membrane conductance: the higher the conductance, the lower
the membrane time constant and the faster the membrane potential dynamics
of the neuron. The only membrane conductance entering the current-based
description is the fixed (i.e., passive) leakage conductance determining the
(passive) membrane time constant τ , as in the equation for the subthreshold
dynamics of the current-based model (4.1). In contrast, the equation for the
membrane potential dynamics in the conductance-based case (4.13) contains
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in addition as many time-dependent conductance terms as there are synaptic
contacts. By rearranging (4.13) into the same form as (4.1), with a leakage
term and a current-source term, we get

duai (t)

dt
= −


gL +

2∑

b=0

Nb∑

j=1

gabij (t)


uai (t) +

2∑

b=0

Nb∑

j=1

gabij (t)Vb (4.22)

= −[ga,tot
i (t)]uai (t) +

2∑

b=0

Nb∑

j=1

gabij (t)Vb, (4.23)

with a time- and activity-dependent total leakage conductance ga,tot
i (t). In

the mean field limit Nb → ∞ with Kb/Nb = const., the sum
∑Nb
j=1 g

ab
ij (t) di-

verges and the effective membrane time constant τa,eff
i (t) := ga,tot

i (t)−1 goes
to zero. In our model, we consider finite but large network sizes for which the
mean of the total conductance is of order

√
Kb � 1 (see Equation (4.17)) re-

sulting in total conductances that are much higher than the passive leakage
conductance. Such high-conductance states accompanied by fast neuronal
dynamics are regularly observed in cortical neurons in vivo (for review see
Destexhe et al., 2003). In fact, the effective membrane time constant in both
real cortex and our model can become shorter than fast synaptic dynam-
ics that have time constants on the order of a few milliseconds. For this
reason, it was essential that we included detailed synaptic dynamics in our
conductance-based description.

High-conductance states not only introduce fast neuronal dynamics that
enable membrane potential changes on a much faster time scale than for the
model with current-based synapses. There is also another, less obvious qual-
itative difference regarding the postsynaptic potentials (PSPs) in response to
presynaptic spikes: in states of high conductance, the PSPs reduce in ampli-
tude – the slower the synaptic dynamics, the more pronounced the effect, as
we will see shortly. Reduced amplitudes of the PSPs in response to stochas-
tically arriving spikes translate to reduced step sizes in the random walk that
the membrane potential performs. This causes a decrease in the spread of
the membrane potential distribution (which is approximately Gaussian at
low rates). Thus, high-conductance states lead to smaller fluctuations in the
membrane potential.

What causes the reduction of PSP amplitude in states of high conduc-
tance compared to a resting neuron? It is immediately obvious from Equa-
tion (4.13) that the postsynaptic current amplitude is proportional to the
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driving force (uai (t)− Vb). However, when the membrane potential dynamics
are fast compared to the dynamics of the synapse, then there can be a sub-
stantial leakage of current during the time course of a single spike response.
The increase in leakage conductance becomes obvious in our reformulated
versions (4.22) and (4.23) where we have already alluded to this effect by
calling ga,tot

i (t) an activity dependent leakage conductance. From this per-
spective it becomes also clear why this effect is stronger for slower synaptic
dynamics: the longer the time course of a single postsynaptic event, the
more of the postsynaptic current will already leak out during its time course,
leading to smaller PSPs. Clearly, this effect can only play a substantial role
when the membrane dynamics are fast compared to the synaptic dynamics,
i.e., when the neuron is in a high-conductance state. Our analysis explains
simulation results reported by Kuhn et al. (2004), in which the effect of
synaptic bombardment on PSPs was investigated.

Numerical procedure

The algorithm for finding self-consistent firing statistics for the conductance-
based model is essentially the same as the one for the current-based model
described in the previous section. However, there are two important differ-
ences: First, we cannot compute the input currents directly from the firing
statistics. Rather, we have to compute the “input conductances” and let the
input currents evolve simultaneously with the membrane potentials in the
explicit simulations of the single neuron problems. Second, we are now con-
sidering synaptic dynamics, i.e., the spike statistics of presynaptic neurons
affect the postsynaptic neuron only after a filtering stage at the synapse (see
Equation (4.19)).

We have schematized the numerical procedure for the conductance-based
model in the lower part of Figure 4.5. The cartoon images of autocorrelation
functions at three stages (’presynaptic’, ’input conductance’, and ’output’)
are meant to stress the importance of doing the mean-field calculations self-
consistently not only for the rates, but also for the correlations: synaptic
filtering introduces correlations that influence the firing statistics (neuronal
output) – provided that the neuronal dynamics are fast enough, as in high-
conductance states. These correlations in the output feed then back to the
neuronal input and get further enhanced by synaptic filtering. Thus, color-
ing the noise correctly is important to capture the full amount of temporal
correlations in conductance-based models.
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Figure 4.7: Dependence of the Fano factor on the synaptic time constant
and the difference between reset and threshold. Left panel: Slower synaptic
dynamics lead to higher Fano factors. In the case of instantaneous synapses
(τs = 0), temporal correlations in the spike trains disappear and Poisson-like
firing statistics (F ≈ 1) are observed. Right panel: Fano factor as a function
of the reset level for a fixed firing threshold equal to 1, and τs = 2 ms.
Decreasing distances between reset and threshold lead to increasing Fano
factors.

4.2.2 Results

As for the model with current-based synapses, we are interested in pinning
down which model parameters control the irregularity of firing, as character-
ized by, e.g., the Fano factor. In the theoretical treatment above, we have
already stressed the importance of even fast synaptic dynamics in states of
high conductance. As expected, we observed such high-conductance states
in all our simulations. In the left panel of Figure 4.7 we show the Fano factor
as a function of the synaptic time constant τs = 0, 1, · · · , 4 ms (denoted τ2 in
(4.15)). Firing irregularity depends sensitively on these synaptic dynamics,
with increasing Fano factors for increasing τs. As in all our simulations, the
passive membrane time constant was fixed at τ = g−1

L = 10 ms. For τs = 0,
we observed consistently Fano factors close to 1. In the right panel of Fig-
ure 4.7, Fano factors are plotted as a function of spike-reset level, where we
kept the firing threshold fixed at 1. (See also Lerchner et al., 2004a).

Figure 4.8 shows how the width of the membrane potential distribution
changes with the synaptic time constant. The results confirm predictions
based on our theoretical analysis of high-conductance states above: longer
synaptic time constants lead to narrower membrane potential distributions.
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Figure 4.8: The width of the membrane potential distribution depends on the
synaptic time constant τs. Longer synaptic time constants result in narrower
distributions.

Note that longer synaptic time constants also lead to higher Fano factors, as
seen in the left panel of Figure 4.7. This is at odds with what we learned
from the current-based model, where wider membrane potential distributions
were always accompanied by higher Fano factors. The reason lies in different
neuronal dynamics for the two models, which lead to different mechanisms
controlling the amount of irregularity in the neuronal firing. We will discuss
these mechanisms in more detail below, where we will see that the degree of
firing irregularity in the conductance-based model is mainly determined by
the amount of temporal correlations in the input (which are controlled by
the synaptic time constant).

In Figure 4.9 we show how the width of the membrane potential distri-
bution depends on the density of the connectivity. To control the expected
overall number of synaptic inputs from both populations, we introduced a
general connectivity factor Kfac and took K1 = Kfac ·100, K2 = K0 = Kfac ·15
with Ka/Na = 0.1 fixed. The three membrane potential distributions shown
in Figure 4.9 were obtained from calculations with Kfac = 15, 30, and 60,
translating to on average 1500, 3000, and 6000 excitatory inputs, respectively.
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Figure 4.9: The width of the membrane potential distribution depends on
the size of the connectivity. Membrane potential distributions are shown for
three different values of the overall connectivity factor Kfac that controls the
average number of synaptic inputs. Higher connectivity results in narrower
distributions.

It can be seen that higher number of inputs result in narrower distributions.
We can understand this result by using Equation (4.22), which tells us that
the total leakage conductance ga,tot

i (t) increases with the number of inputs:
the summation runs over more terms that are proportional to the (approx-
imately same) firing rate. As explained in the analysis of high-conductance
states above, a higher total conductance results in smaller postsynaptic po-
tentials and thus in narrower membrane potential distributions.

4.2.3 Discussion

The basic mechanism for producing irregular firing in the conductance-based
model is the same as for the current-based version discussed in Section 4.1:
random but high connectivity and a negative feedback between excitatory
and inhibitory populations lead to a random walk of the membrane potential
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with a mean value below threshold and occasional excursions above threshold.
As for the current-based model, the degree of irregularity is controlled by

the step size of the random walk relative to the distance between reset and
threshold. For this reason, we observed higher Fano factors for reset levels
that were closer to threshold, as shown in the right panel of Figure 4.7.

We also observed some important differences regarding the mechanisms
that control the degree of irregularity in the two models. Probably the most
straightforward difference is that the short effective membrane time constant
observed in the conductance-based version makes synaptic filtering, even on
a fast time scale, an important concept. The left panel in figure 4.7 shows the
sensitive dependence of the Fano factor on the synaptic time constant. How-
ever, we saw in Figure 4.8 that there must be an additional, different mech-
anism at work. The increasing spike-count irregularity for longer synaptic
time constants cannot be explained by random-walk dynamics of the mem-
brane potential: instead of wider membrane potential distributions at higher
Fano factors, we even observed narrower distributions. What then, makes
the firing more irregular for longer synaptic time constants? The answer is
that longer synaptic time constants lead to longer temporal correlations in
the input currents which in turn introduce a higher tendency towards bursty
firing. There is an elegant way to explain this phenomenon by rearranging
the equation of motion for the membrane potential (4.13) via (4.23) yet one
step further:

duai (t)

dt
= −ga,tot

i (t)


uai (t)−

∑2
b=0

∑Nb
j=1 g

ab
ij (t)Vb

ga,tot
i (t)




= −ga,tot
i (t) [uai (t)− VS(t)] , (4.24)

where we follow Shelley et al. (2002) in calling VS(t) the effective reversal
potential. We can see directly from (4.24) that the membrane potential tries
to follow VS(t) with a time constant of [ga,tot

i (t)]−1. In states of high con-
ductance, that time constant can be very short, while the effective reversal
potential changes on the same time scale as the synaptic dynamics. When-
ever VS(t) makes an excursion above threshold, the membrane potential tries
to follow it until it hits threshold and gets reset. For longer synaptic time
constants, VS(t) can stay longer above threshold, making the neuron fire re-
peatedly (emitting a burst of spikes) due to the fast neuronal dynamics in the
high-conductance state. As mentioned previously, more bursty firing means
higher Fano factors. Figure 4.10 shows that the membrane potential fol-
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Figure 4.10: Emergence of bursty behavior in states of high conductance:
The membrane potential u(t) follows effective reversal potential Vs(t) closely,
except when Vs(t) is above threshold. As long as Vs(t) is super-threshold,
the neuron fires repeatedly.

lows the effective reversal potential VS(t) closely except when VS(t) is above
threshold. Synaptic filtering causes temporal correlations in VS(t). Without
synaptic dynamics, these correlations are removed and thus there is no ten-
dency to bursty behavior, reflected by Fano factors close to 1 (as in the left
panel of Figure 4.7 for τs = 0).

We saw in Figure 4.9 that the membrane potential distribution becomes
narrower as the connectivity increases. There is no limit to this effect, which
leads to a pathological state for the mean-field limit of Ka →∞ with Kb/Nb

fixed: in this case the total leakage conductance diverges and postsynaptic
potentials vanish in amplitude. This is another qualitative difference between
this and the current-based model.

Relevance of this model

Explaining the mechanisms underlying irregular firing of neocortical neurons
in vivo has been a long-standing challenge. This work offers a biologically
plausible solution to this problem, covering and explaining a host of inde-
pendent experimental observations.
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One may wonder how biologically plausible a model with integrate-and-
fire (IAF) neurons can possibly be. This question was recently addressed in a
work by Meffin et al. (2004), where current-based IAF neurons, conductance-
based IAF neurons, and Hodgkin-Huxley model neurons were compared in
the light of neocortical dynamics. It was found that the conductance-based
synapse is the essential mechanism required to explain a range of data on
cortical neurons in vivo and that the particular model of spike initiation is
not crucial. While the current-based IAF neuron and the conductance-based
one showed several qualitative differences (in agreement with our study),
the conductance-based IAF and the Hodgkin-Huxley neurons showed almost
identical dynamics regarding firing statistics and membrane potential statis-
tics. We are thus optimistic that our theory can provide physiologically
meaningful explanations.

Experimental evidence for the ubiquity of high-conductance states in neo-
cortical neurons in vivo (see, e.g., Borg-Graham et al., 1998) has drawn
much attention recently. Rudolph and Destexhe (2003) even propose high-
conductance states to be essential for maintaining irregular firing activity, on
the grounds that in such states there is no need for exact balance between
excitation and inhibition. The authors are especially skeptical towards the
consensus that has emerged for explaining irregular firing states: that the
membrane potential stays close to firing threshold and that action poten-
tials are triggered by fluctuations in the membrane potential. They argue
that such a state would, e.g., require a fine-tuned balance between excitation
and inhibition and that it were presently unclear how such a subthreshold
regime might appear physiologically. In contrast to that, our model together
with our theory provides a natural explanation for the emergence of such
states, without requiring any fine-tuning and without imposing exact bal-
ance between excitation and inhibition. In fact, we do not assume balance
at all; we just look for self-consistent asynchronous solutions. In our model,
the dynamical balance emerges as a consequence of the network dynamics.
It is true that we need to assume exact balance to derive analytically rate
estimates, but the theory itself and the solutions found by the numerical pro-
cedure do not need such a stringent condition. In both real cortex and our
model, the negative feedback between inhibitory and excitatory populations
always produces sufficiently balanced states (notwithstanding pathological
exceptions). Thus, we do not argue that balance plays a causal role in pro-
ducing irregular firing – rather, we point out that it emerges naturally from
the network dynamics. The key to solving the problem is to use a truly self-
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consistent description. This brings us back to a fundamental problem in the
proposition of Rudolph and Destexhe (2003) that high-conductance states
are essential for maintaining an irregular firing state. In their investigations,
they assumed irregular firing of presynaptic neurons to begin with and con-
cluded that high-conductance states make it easier for the target neuron to
fire irregularly in response as well. That approach, however, addresses only a
part of the problem and circumvents the real question about the emergence
of irregular firing states by simply assuming them in the input. With our
theory it is for the first time possible not only to explain the mechanisms for
irregular firing (the combination of quenched disorder in the connectivity,
relatively strong synapses, and negative feedback between excitation and in-
hibition), but also to quantify the degree of irregularity – and more generally
the firing correlations – as functions of intrinsic network parameters.

We have already mentioned the study by Meffin et al. (2004), in which
the differences between a current-based IAF model, a conductance-based
one, and a Hodgkin-Huxley model were carefully investigated. One of their
conclusions was that there are different mechanisms underlying the irregular
firing in the current-based and the conductance-based model. We do agree
that there are different mechanisms controlling the amount of irregularity
and the nature of firing correlations in the two models, as analyzed above.
However, the mechanisms underlying the emergence of irregularity itself can
be the very same, as we have demonstrated in this work.

In their review on high-conductance states of neocortical neurons in vivo,
Destexhe et al. (2003) point out that most of the network-level modeling
studies with IAF neurons did not use conductance-based synapses (“only
one study has reported the genesis of self-sustained stochastic states with
conductance-based synapses”) and that it is consequently impossible to com-
pare the states in these models with conductance measurements in vivo.
Here, we provide a network-level study that elucidates how high-conductance
states and firing correlations are intimately related in highly connected, ran-
dom “balanced” networks – without a causal role for high-conductance states
in the emergence of irregularity per se.
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4.3 Orientation hypercolumn in V1

The primary visual cortex (V1) contains neurons that respond strongest to
elongated visual stimuli of a specific orientation, the neuron’s preferred ori-
entation (PO). Such orientation selective neurons exhibit a tuned response
to other orientations, with decreasing firing rates as the orientation angle
becomes more dissimilar, until the firing vanishes for orientations outside the
tuning width of the neuron. Neurons with the same PO are grouped together,
forming cortical columns. A collection of columns that span the entire range
of orientation angles (and that respond to the same area in the visual field)
is called an orientation hypercolumn.

We can extend the mean field theory developed for a single cortical column
to an orientation hypercolumn by introducing structural inhomogeneity into
the network and solving the mean field equations simultaneously for multiple
cortical columns.

We will see that several key features of orientation selective neurons in V1
can be reproduced and explained within the model. Among these are a tuning
width that is invariant with respect to the stimulus contrast, irregular firing
with statistics including Fano factors greater than 1, and an almost linear
relationship between stimulus contrast and firing rate. Beyond that, we can
make quantitative predictions about the tuning of the firing irregularity and
that of the input currents.

4.3.1 Model and methods

We model the orientation hypercolumn as an ensemble of n orientation
columns with preferred orientations θ equally spaced between −π/2 and π/2.
Each column consists of an inhibitory and an excitatory subpopulation of
sizes N1/n and N2/n, respectively. We introduce structure to the random
connectivity of the network by grading the density of connections between
orientation populations by the similarity of their respective angles. Specif-
ically, any given neuron in sub-population a of column θ receives synaptic
input from any other neuron of sub-population b of column θ′ with probability

Pab(θ − θ′) =
Kb

Nb

(1 + γ cos 2(θ − θ′)) , (4.25)

where Kb is the expected overall number of inputs from neurons in population
b. As for the single-column model, we take the ratio Kb/Nb to be independent



4.3. ORIENTATION HYPERCOLUMN IN V1 51

Ex.

In.

Ex.

In.

Ex.

In.

Ex.

In.

Ex.

In.

Columns: PO 
�

Stimulus:
Orientation �

0

I � ext( � 0) J11

J12

J21

J22

Ex.

In.

Figure 4.11: Structure of the orientation hypercolumn model. The network
consists of multiple orientation columns, interconnected with densities that
depend on the similarity of the preferred orientations (PO). Connections are
only indicated between one column and the rest of the network. Inset: the
local structure of each orientation column corresponds to that of the single-
column model described in Section 4.1.

of b. The parameter γ ∈ (0, 1) defines the degree of tuning, which we assume
to be the same for the inhibitory and the excitatory population. The func-
tional form of (4.25) implies that the connection probability between neurons
decreases as their difference in PO increases. This is motivated by the fact
that orientation columns with similar PO tend to lie closer together on the
cortical surface than ones with dissimilar PO, and anatomical evidence that
the connection probability between cortical neurons decreases with distance.

The following analysis is performed for current-based synapses and we use
the same scaling as described in the single-column model in Section ??: each
nonzero synapse between a neuron in population b and a neuron in population
a has strength Jab/

√
Kb, independent of their preferred orientations.

The orientation hypercolumn receives excitatory input from the lateral
geniculate nucleus (LGN) with a strength proportional to the stimulus con-
trast Iext

a , and a weak tuning to the stimulus orientation θ0. We model this
external input and its tuning as originating from a feed-forward connectivity
from the LGN, as for example in the classical model of Hubel and Wiesel
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(1962). For simplicity, we take it to be constant in time and the same for all
neurons within population column aθ:

Iext
aθ (θ0) = Iext

a (1 + ε cos 2(θ − θ0)), (4.26)

where the degree of tuning is determined by the parameter ε, which is positive
and smaller than 1 to ensure that the the external input is always excitatory
(as the input from LGN in real cortex). We followed Ben-Yishai et al. (1995)
in choosing the simplest possible general form that is periodic with period π
for both the intracortical connectivity (4.25) and the external input current
(4.26).

We can now write the equation of motion for the subthreshold membrane
potential of neuron i in orientation population aθ as

duaθi (t)

dt
= −u

aθ
i (t)

τ
+ Iext

aθ (θ0) + Iaθ,rec
i (t), (4.27)

where the recurrent input current Iaθ,rec
i (t) is given by

Iaθ,rec
i (t) =

2∑

b=1

θn∑

θ′=θ1

Nb/n∑

j=1

Jaθ,bθ
′

ij Sbθ
′

j (t). (4.28)

To derive a mean field description of the recurrent current, we start by
separating the synaptic strengths Jaθ,bθ

′
ij and the spike trains Sbθ

′
j (t) into

mean- and fluctuating parts, analogously to (4.2) and (4.3). We then obtain
a set of equations, defining the Gaussian random processes describing the
recurrent inputs to the 2n column populations aθ:

Irec
aθ (t) =

2∑

b=1

Jab

(√
KbAb +

√
1−Kb/NbBb(t)

)
, (4.29)

with

Ab =
1

n

θn∑

θ′=θ1

(1 + γ cos 2(θ − θ′))rb(θ′) (4.30)

Bb(t) =
1√
n

θn∑

θ′=θ1

√
1 + γ cos 2(θ − θ′)

((
(rbθ

′
j )2

) 1
2 xbθ′ + ξbθ′(t)

)
(4.31)

The part Jab
√
KbAb of Irec

aθ (t) is time independent and describes the pop-
ulation mean common for each neuron in column population aθ (here we
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consider stationary rates only to highlight the main principles). It is pro-
portional to Ab, which is an average over the column population rates rb(θ

′)
weighted by the density of connections between the source columns θ′ and
the target column θ.

The part
√

1−Kb/NbBb(t) in the statistical description of the recurrent

inputs (4.29) contains the terms that are due to the randomness in the con-
nectivity – thus it vanishes in case of full connectivity (Kb = Nb). The

term Bb(t) contains averages of the rate fluctuations (rbθ
′

j )2 and the correctly
colored temporal fluctuations ξbθ′(t), weighted by the square root of the con-
nection densities. The unit variance random number xbθ′ in (4.31) accounts
for the fact that the specific number of connections from the source column
population bθ′ to the target neuron is random, while the rate fluctuations
accounts for the distribution of firing rates within bθ′. Analogous to the pre-
vious mean field models, picking a specific set {xbθ′ : b = 1, 2; θ′ = θ1, . . . , θn}
amounts to sampling a specific neuron in the target population aθ. Finally,
the temporal fluctuations in the recurrent input current (4.29) are captured
by the Gaussian random processes ξbθ′(t), which obey

〈ξbθ′(t)ξbθ′(t′)〉 = Cbθ′(t− t′). (4.32)

Here, Cbθ′(t − t′) denotes the average autocorrelation function of the fluc-
tuations in the spike trains of neurons with PO θ′ in population b, given
by

Cbθ′(t− t′) =
1

Nb/n

Nb/n∑

j=1

〈δSbθ′j (t)δSbθ
′

j (t′)〉. (4.33)

The balance condition

We model the orientation hypercolumn as multiple interconnected (generic)
columns. Thus, the reasoning that led us to the formulation of the balance
condition for a single column in Section 4.1 can be directly applied to the
hypercolumn, provided that we require it to hold for all of the orientation
columns simultaneously: the input currents in Equation (4.27) have to nearly
cancel for each column population aθ, leading to the following set of 2n
equations for a = 1, 2 and θ = θ1, . . . , θn:

√
K0Î

ext
a (1 + ε cos 2(θ − θ0)) +

2∑

b=1

Jab
√
KbAb = O(1), (4.34)
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where we have used the mean-field description (4.29) of the mean recurrent
currents.

We will now outline how one can find analytical estimates of the orienta-
tion population rates ra(θ) from (4.34). As mentioned previously, orientation
selective neurons in V1 tend to have suppressed firing for stimulus orienta-
tions θ0 that differ more than the tuning width θc (“critical angle”) from the
neuron’s preferred orientation θ: ra(θ) = 0 for |θ − θ0| > θc. We will call
this property narrow tuning in contrast to broad tuning with non-vanishing
firing rates for all stimulus orientations. The solutions for the broadly tuned
case are easier to find and they provide insight into the expected form of the
analogous solutions to the narrowly tuned case; i.e, they provide us with an
ansatz for solving the biologically more realistic narrow case.

We start by rewriting Ab, the weighted average over the column popula-
tion rates ra(θ) defined in (4.30), in a continuum notation

Ab =
∫ π/2

−π/2
dθ′

π
(1 + γ cos 2(θ − θ′))rb(θ′), (4.35)

so that (4.34) becomes a set of integral equations for ra(θ). In the broadly
tuned case, which we consider first for the reasons outlined above, these
can be solved by using a Fourier expansion of the rates around the stimulus
orientation, ra(θ) = ra,0 +ra,2 cos 2(θ−θ0)+ · · ·, and with help of the identity
cos(α − β) = cosα cos β + sinα sin β. For finding approximate solutions to
the mean rates, we set the small term of order 1 on the right-hand side of
(4.34) to zero. Due to our choice of the functional form for the connection
probabilities (4.25) and for the external input current (4.26) in which we only
retained the two first Fourier components of a more general description with
period π, the solutions turn out to be particularly simple with the same low
number of Fourier components:

√
K0Î

ext
a (1 + ε cos 2(θ − θ0)) +

2∑

b=1

√
KbJab

[
rb,0 +

1

2
γrb,2 cos 2(θ − θ0)

]
= 0.

(4.36)
The resulting equations for each of the two Fourier components are directly
analogous to the balance conditions (4.8) and (4.20) obtained for the previous
models. We arrive thus at solutions for each of the Fourier components of
the rates that look similar to (4.9) and (4.21):

ra,0 = −
2∑

b=1

(Ĵ−1)abÎ
ext
b (4.37)
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ra,2 = −2ε

γ

2∑

b=1

(Ĵ−1)abÎ
ext
b =

2ε

γ
ra,0, (4.38)

where the matrix Ĵ is composed of the elements Ĵab = Jab
√
Kb/K0. Equa-

tion (4.38) tells us that these solutions for the broadly tuned case correspond
to parameter values of ε ∈ (0, γ/2], since the firing rates ra(θ) must be non-
negative for all θ and θ0.

We can now turn to the narrowly tuned case, for which we try the ansatz
that the solution for non-vanishing rates has the same form as for the broadly
tuned case, and is equal to zero otherwise. This can be formally written as

ra(θ) =

{
ra,0 + ra,2 cos 2(θ − θ0) for |θ − θ0| < θc
0 for |θ − θ0| ≥ θc,

(4.39)

where θc = −1/2 cos−1(ra,0/ra,2). We do not need a population index a
for the tuning width θc because it turns out to be equal for excitatory and
inhibitory neurons due to our population-independent choices of ε and γ. It
is therefore convenient to restrict the integration in (4.35) to the range for
non-zero rates, defined by the (yet unknown) tuning width θc. To make the
dependence on θc explicit, we rewrite the part of the ansatz for |θ′− θ0| < θc
in the form

ra(θ) = ra,2(cos 2(θ − θ0)− cos 2θc) (4.40)

and solve for the two unknowns θc and ra,2 instead of ra,0 and ra,2. It turns
out that this ansatz leads to valid solutions within the parameter regime
ε ∈ (γ/2, γ], which obey, analogously to (4.36),

0 =
√
K0Î

ext
a (1 + ε cos 2(θ − θ0))

+
2∑

b=1

√
KbJabrb,2 [f0(θc) + γf2(θc) cos 2(θ − θ0)] , (4.41)

where

f0(θc) =
∫ θc

−θc

dθ′

π
(cos 2θ′ − cos 2θc) (4.42)

=
1

π
(sin 2θc − 2θc cos 2θc) (4.43)

and

f2(θc) =
∫ θc

−θc

dθ′

π
cos 2θ′(cos 2θ′ − cos 2θc) (4.44)
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=
1

π
(θc − 1

4
sin 4θc). (4.45)

Similar expressions appeared in a different model studied by Ben-Yishai et al.
(1995) and Hansel and Sompolinsky (1998), from whom we have borrowed
the notation.

As for the broadly tuned case, we can solve these equations for each of
the two Fourier components separately, yielding a pair of equations for ra,2
and θc for each angle θ:

Îext
a +

2∑

b=1

Ĵabrb,2f0(θc) = 0 (4.46)

εÎext
a + γ

2∑

b=1

Ĵabrb,2f2(θc) = 0 (4.47)

We can solve for θc via dividing (4.47) by (4.46), which eliminates the de-
pendence on ra,2, yielding a single equation in the unknown θc:

f2(θc)

f0(θc)
=
ε

γ
(4.48)

Figure 4.12 shows the dependence of θc on the ratio ε/γ according to (4.48).
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Figure 4.12: Shape of the function f2(θc)/f0(θc) = ε/γ.

We can see directly from this figure that narrowly tuned solutions can only
be found for ε ∈ (γ/2, γ). Positive ε below that range lead to broad tuning,
as shown above. For ε→ γ, the tuning width θc becomes vanishingly small,
and for ε > γ there are no solutions to the balance condition (4.41) for θc in
the meaningful range (0, π/2].



4.3. ORIENTATION HYPERCOLUMN IN V1 57

Finally, with the knowledge of θc, we arrive at a familiar form for the rate
solutions (cf. (4.9), (4.21), and (4.37)):

ra,2 = − 1

f0(θc)

2∑

b=1

(Ĵ−1)abÎ
ext
b . (4.49)

The first Fourier component of the rate is then obtained via ra,2 by using the
equality ra,0 = −ra,2 cos 2θc.

The tuning width θc, which can be determined from (4.48), depends only
on the two parameters ε and γ that specify the degree of tuning of the external
input from the LGN and of the intracortical connectivity, respectively. In
particular, we find that the tuning width is independent of the stimulus
contrast in our model. As noted earlier, a tuning width that is invariant
with regard to the stimulus contrast is one of the main properties observed
in orientation selective cortical neurons that cannot be accounted for in pure
feed-forward models. In our model, it is a consequence of the dynamical
balance that is continually maintained by the negative feedback between the
excitatory and the inhibitory neuron populations within the cortex.

Further inspection of (4.48) tells us that stronger modulation of the exter-
nal input tuning (larger ε) results in narrower tuning of the neuronal firing.
However, stronger modulation of the intracortical connectivity (larger γ for ε
fixed) results in less sharp tuning of the neuronal firing. This may seem coun-
terintuitive at first sight, but it is a natural consequence of the fact that the
intracortical connectivity is predominantly inhibitory, which leads to com-
petitive behavior between individual orientation columns. This competition
culminates in a winner-takes-all behavior for “flat” cortical connectivity with
γ = 0, which leads theoretically to a δ-function-like tuning centered at the
stimulus orientation.

Tuning of the neuronal input noise

It is in general not possible to provide an analytical expression of the self-
consistent input noise. As for the single-column models analyzed in Sec-
tion 4.1, we have to resort to numerical evaluations on a case-by-case basis.
However, we can obtain some insight into properties of the tuning of the
input noise when we consider a general feature of the firing correlation func-
tions Caθ(t− t′) defined in (4.33): for irregular firing states, they always have
a piece proportional to ra(θ)δ(t − t′). This delta function at t = t′ provides
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a flat contribution to the noise spectrum that can be calculated analytically.
Specifically, we find that the high-frequency limit of the neuronal input noise
has the same orientation tuning as the external input to the neuron. To
obtain this result, we use the mean field description of the recurrent current
(4.29) together with a continuum formulation for the weighted average Bb(t)
defined in (4.31) to derive the following expression of the dynamic noise in
the input current:

〈δIrec
aθ (t)δIrec

aθ (t′)〉 =
2∑

b=1

J2
ab(1−Kb/Nb)

∫ π/2

−π/2
dθ′

π
1 + γ cos 2(θ − θ′))Cbθ′(t− t′). (4.50)

For t→ t′, or, equivalently for ω →∞ in the frequency domain, we get then

lim
ω→∞〈|δI

rec
aθ (ω)|2〉 =

−Îext
a [1 + ε cos 2(θ − θ0)]

2∑

b=1

J2
ab(1−Kb/Nb)

2∑

c=1

(Ĵ−1)bcÎ
ext
c . (4.51)

Details of the derivation can be found in Lerchner et al. (2004b).

Numerical procedure

For the orientation hypercolumn model, we have to solve the mean field
equations simultaneously for multiple cortical columns. The procedure to do
so is directly analogous to the one described for the single column model. Now
we need to determine and update the statistics for 2n orientation populations
aθ (instead of 2 populations) at each iteration. However, much computing
time can be saved by making use of the inherent symmetry of our model:
to determine the self-consistent population statistics for the n orientation
columns, we only need to explicitly simulate (many trials of) single neurons
corresponding to half of the columns and mirror the results for the other half.

Once the algorithm has converged and we have found the population
statistics for the rates, the rate fluctuations and the correlations, we can col-
lect statistics of individual neurons. Individual neurons have specific connec-
tion patterns (randomly drawn but held fixed) from the 2n source orientation
populations, which brakes the symmetry for the calculations. A specific con-
nection pattern (and therefore a specific neuron) is determined by drawing a
set of 2n random numbers xbθ′ (see Equation (4.31))

{xbθ′ : b = 1, 2; θ′ = θ1, . . . , θn}, (4.52)
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Figure 4.13: Dependence of the irregularity in firing on synaptic strengths.
The Fano factor is plotted as a function of the overall synaptic strength
Js for three different stimulus orientations: θ0 = 0 (the neuron’s preferred
orientation), θ0 = 24, and θ0 = 42 ≈ θc (the tuning width). For all stimulus
orientations, stronger synapses generally lead to higher spike count variances.

which needs to be kept fixed over all trials for collecting the statistics for
that neuron.

4.3.2 Results

In agreement with the results obtained from the current-based single-column
model, we find that the firing irregularity of neurons within the orientation
hypercolumn is mainly controlled by the strength of the synapses: Stronger
synapses lead to higher Fano factors. Figure 4.13 shows the Fano factor as a
function of the overall synaptic strength Js for three different stimulus orien-
tations. The effect is most pronounced at the neuron’s preferred orientation,
but it is not much diminished even close to the tuning width of the neuron
(where firing rates are very low).

In Figure 4.14 we compare experimental data obtained from an orienta-
tion selective neuron in cat primary visual cortex (Sclar and Freeman, 1962)
with numerical results for an individual neuron of our hypercolumn model.
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Figure 4.14: The tuning width is invariant with respect to contrast. Left
panel: Experimental data from a simple cell in cat V1. Orientation tuning
was measured at different contrasts. Data from Sclar and Freeman (1962);
figure adopted from Sompolinsky and Shapley (1997) Right panel: Numerical
results for an individual neuron within our model. The same qualitative
features as in the experiment can be seen, including an almost linear input-
output relationship between stimulus contrast and firing rate.

The data from the model look qualitatively like those from experiments.
Most importantly, the tuning width is invariant with respect to the stimulus
contrast, as predicted by the theory (see Equation (4.48)). In addition, the
data from both experiment and model show an almost linear relationship
between stimulus contrast and firing rate. We anticipated this result from
our analytically derived rate estimate (4.49).

In our analytical treatment, we have calculated that the high-frequency
neuronal input noise power has the same tuning as the external input (4.51).
Figure 4.15 shows simulation results that confirm this prediction. The tuning
of the noise variance in the neuronal input current (triangles) is overlaid with
the tuning of the external input (solid line). We adjusted the scaling of the
two y-axes in Figure 4.15 and aligned them at 0 (see the lower cut-off) so
that the modulation strengths can be compared directly.
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Figure 4.15: The neuronal input noise has the same orientation tuning as
the external input. Data collected from a neuron with preferred orientation
θ = 0. The noise variance of the input current is plotted as a function of
orientation (blue triangles), overlaid with the tuning of the external input
(green solid line).

4.3.3 Discussion

In this section, we showed how the complete mean-field theory for randomly
connected spiking neurons can be extended to networks with structural in-
homogeneity, making it possible to incorporate functional architecture.

We applied the theory to a simple model of an orientation hypercolumn in
primary visual cortex and obtained a range of results that are in agreement
with data obtained from experiment.

With help of the numerical procedure, introduced in the previous sec-
tions and adapted here for this model, we are in a position to make quanti-
tative statements about the orientation tuning of both firing statistics and
input current statistics. Some of the tuning properties of the firing statistics
are experimentally established and can be reproduced and explained by our
model. Other properties, like the orientation dependence of the Fano factors
(for more details see Lerchner et al., 2004b) are straightforward to obtain
experimentally with methods that have been employed previously, while the
predictions concerning the tuning of the input currents and their fluctuations
in orientation selective neurons are more difficult to test in vivo.
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Figure 4.16: Tuning of the membrane potential distribution. Histogram
counts collected from neurons with PO θ = 0 and tuning width θc ≈ 43
(as in the right panel of Figure 4.14) for four different stimulus orientations
θ0. The mean of the distributions move away from threshold as the stimulus
orientation becomes less optimal (panels from bottom to top).

Here, we performed the analysis and the numerical investigations with
current-based integrate-and-fire neurons, which limits the realism of the
model in a few respects, such as membrane potential statistics. Figure 4.16
shows how the membrane potential distribution depends on the stimulus ori-
entation. Histogram counts were collected from neurons with PO θ = 0 and
tuning width θc ≈ 43 (the corresponding tuning of the firing rate is shown in
the right panel of Figure 4.14). We plotted the histograms for four different
stimulus orientations θ0 = 0, 24, 48 an 72. As a general trend, we see that the
mean of the distributions shifts away from threshold as the stimulus becomes
more dissimilar from the neurons preferred orientation. Clearly, the width
of the distributions and their centering (especially for the cases outside the
tuning width, shown in the upper two panels) are physiologically unrealis-
tic: With our scaling, where the resting potential is set to 0 and threshold
to 1, the reversal potential for inhibitory synapses would correspond to a
value of about −2/3. Thus, the membrane potentials should be confined be-
tween −2/3 and 1. However, preliminary investigations on the hypercolumn



4.3. ORIENTATION HYPERCOLUMN IN V1 63

model with conductance-based synapses show that the general trend (the
mean of the (narrower) distributions shifts away from threshold as θ and θ0

become more dissimilar) is the same. From this, and first of all from what
we have learned about the similarities and differences between current-based
and conductance-based model for a single column, we have reason to expect
that many underlying mechanisms can already be explained by the simpler
model.

Conductance-based synapses can be incorporated into this mean-field ap-
proach by exactly the same means as shown for the single-column model in
the previous section. Due to the generality of the approach and due to the
explicit simulation of the synapse and the neuron in the numerical proce-
dure, it is possible to incorporate more of the known physiology. In fact, any
synapse model, possibly including short-term facilitation and depression, and
even long-term potentiation and depression (i.e., learning) can be used for the
numerical procedure. The same is true for the neuron model, which may be
Hodgkin-Huxley-like or even a morphologically detailed multi-compartment
model. While the use of such detailed models is computationally prohibitive
for large-scale simulations of full networks, our mean-field approach does
make it possible to study the dynamics of large spiking neural networks with
computationally more expensive neurons and synapses. In our approach, the
size of the network enters only as a parameter in the computations. The
computationally demanding aspects of our approach are the number of tri-
als needed to collect the firing statistics, the number of iterations needed
for the algorithm to converge to the self-consistent solutions, and finally, es-
pecially important for more complex network architectures, the number of
populations for which the firing statistics have to be determined.

Using the techniques presented in this section, it is conceptually straight-
forward to include much more of the known functional architecture, such
as an entire orientation pinwheel in the primary visual cortex. In the same
manner, further coding features such as spatial phase or spatial frequency
can be incorporated. Seen from a computational perspective, one should be
careful when extending the model in these directions, because the number of
“populations” for which the firing statistics have to be calculated increases
quickly with the level of anatomical detail.
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Abstract

Spontaneous rhythmic activity is an almost universal phenomenon in developing
neural networks. The activity in these hyperexcitable networks is comprised of re-
curring “episodes” consisting of “cycles” of high activity that alternate with “silent
phases” with little or no activity. We introduce a new model of synaptic dynamics
that takes into account that only a fraction of the vesicles stored in a synapse is
readily available for release. We show that our model can reproduce spontaneous
rhythmic activity with the same general features as observed in experiments, in-
cluding a positive correlation between episode length and length of the preceding
silent phase.

Key words: synapse model, hyperexcitable network, synaptic vesicle pools

1 Introduction

Network-driven spontaneous activity in developing neural networks is observed
in many parts of the nervous system, including the hippocampus, the retina,
and the spinal cord (see O’Donovan [3] for a review). Despite the different
network architectures and the different neuron types involved, the general
dynamics of this activity is always similar: recurring episodes of synchronous
discharge, separated by silent phases. In the chick spinal cord, the episode
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duration is 30–90 sec with a rhythmic cycle rate of 0.1–2 Hz that decreases
during the course of each episode.

All of these networks share a common feature during this stage of develop-
ment: they are hyperexcitable. For example, connections that are inhibitory
in the mature chick spinal cord are functionally excitatatory in the embryo.
This hyperexcitability in combination with limited resources within synapses
are the key elements of our model. Especially the small terminals of synapses
in the central nervous system (as compared to, e.g., neuromuscular junctions)
have only a very limited number of readily available vesicles. Studies on hip-
pocampal neurons indicate that only 15% of all vesicles in a synaptic terminal
can be readily released [1]. The total number of vesicles in synaptic boutons
of CNS neurons is estimated between 200 and 520 (see [2] and [6]).

In our model, we term the vesicles that can be readily released the active pool
A, and the vesicles that need more time to be recruited (by transition into the
active pool) the storage pool S. We show how the repeated depletion of A can
produce cycles within an episode, and how the overall length of an episode is
determined by the size of S at the onset of the episode. The start of an episode
is triggered by spontaneous vesicle release at the synapses (“synaptic noise”),
whereas slow postsynaptic depression reduces the excitability of the network
immediately after an episode.

The spontaneous and evoked episodes in our model network share several of the
qualitative features found in measurements of the developing chick spinal cord
[7]: a decreasing cycling frequency during each episode, a positive correlation
between episode duration and the length of the preceding silent phase, and a
positive correlation between the length of the episode and the initial cycling
frequency.

2 The Model

We introduce a new model for presynaptic dynamics that accounts for the
fact that CNS nerve terminals are very tiny and contain relatively few vesicles
(usually about 200 overall). Only a fraction of about 15–20% of these vesicles
can engage readily in exo-endocytotic recycling [1]. Recycling of released vesi-
cles is a fast process, making the apparent number of readily releasable vesicles
(size of the active pool A) higher than their actual number within the synaptic
terminal. For CNS neurons, recycling (and the compensation for loss of neu-
rotransmitter) is fast enough that this small number does not seem to pose
a major limitation for activity levels within the normal physiological range.
Within a hyperexcitable network, however, synapses can be driven to the
limit of their capacity due to the positive feedback in the network. Effectively,
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exhausting the active pool may be a kind of activity-dependent depression
acting on a short time scale: reduced sizes of A will likely be accompanied
by reduced probability of vesicle release [2]. In our model, we assume that
A gets constantly, but slowly, replenished by transition of vesicles from the
storage pool S into A, and that the rate of this replenishment decreases with
decreasing sizes of S. Finally, an even slower metabolic process is responsible
to replenish S by generating “new” vesicles.

Experimentally, a slow time-delayed postsynaptic depression is observed after
each episode. This slow depression reaches its maximum 1–1.5 min after the
end of the episode and decays slowly during the entire silent phase [4]. We
model this depression by a mechanism that integrates over the activity of the
postsynaptic neuron within a time window of 10 sec, and which takes effect
with a further delay of 15 sec. The activity within the window is compared
with a range of activity in which the neuron does not adjust its sensitivity to
inputs. If the activity is too high (relative to the neutral range), the synaptic
strength is scaled down, if it is too low, it is scaled up. The synaptic strength
is allowed to get slightly negative in response to very high activity, which can
lead to post-episode hyperpolarizations as observed in intracellular recordings
[3].

Within episodes, the network sustains a state of low activity between the cycle
peaks. In the current form of the model, this activity is simulated by random
neuronal firing at a low rate for a limited time after each cycle.

Finally, we account for observed spontaneous synaptic events that become
more frequent and stronger throughout the silent phase, peaking before the
spontaneous start of an episode [3]. We model these events as spontaneous
vesicle release (Poisson noise) that increases in frequency during the course of
the silent phase.

The synaptic model outlined above is used to connect leaky integrate-and-
fire neurons randomly, to create an all-excitatory recurrent network without
external input.

3 Results

The following results were obtained with a network size of N = 300 neurons,
randomly connected with a probability of 0.4. We found the same qualitative
behavior with bigger network sizes (we tried up to thousands of neurons) and
different connection probabilities.

The top panel of Fig. 1 shows the average network activity plotted as function
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Fig. 1. Network activity, and pool sizes of a sample synapse. Top panel: Network
activity showing three episodes; the second episode started spontaneously, while the
third one was evoked early at time 215 sec, resulting in an episode of shorter length.
The middle and the lower panel show time courses of pool sizes from a randomly
chosen synapse. Middle panel: active pool A. Lower panel: storage pool S.

of time. The network activity was obtained by averaging the total number of
spikes per millisecond (ms) over a sliding time window of 20 ms. With the
absolute refractory period of 3 ms chosen in our simulations, the maximum
average activity is 0.25. The figure shows the episodic nature of the activity,
where three episodes of cycling activity can be seen. The first episode was
evoked at the beginning of the simulation. The second episode started spon-
taneously, while the third one was evoked by driving the membrane potential
of all neurons above threshold for a few milliseconds at time t = 215 sec. It
can be seen that the cycling frequency decreases during the course of each
episode. The prematurely evoked episode is shorter in length and starts with
a lower cycling frequency.

Generally, we found a positive correlation between length of the silent phase
and length of the following episode. We also observed that shorter episodes al-
ways started with a lower cycle frequency. These correlations are qualitatively
similar to experimental findings [7].

The time course of a the active pool A and the storage pool S of a randomly
chosen synapse in the network are plotted in Fig. 1 in the middle and lower
panel, respectively. The size of A fluctuates synchronously to the cycles of
activity within the episodes, while the size of S decreases monotonically during
each episode until it reaches zero at the end of the episode. During the silent
phase, S is refilled slowly.
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4 Discussion

The nature of the correlations between episode length and length of the pre-
ceding silent phase in our model can be understood by comparing the time
courses of the synaptic pool sizes with the network activity (Fig. 1). The activ-
ity cycles are reflected as an alternation between depletion and replenishment
of the active pool A. Cycles are terminated because of exhaustion of the active
pool, which reduces the network activity drastically and gives A time to be
refilled, until a new avalanche of activity exhausts A once again. During the
course of the episode, the storage pool S reduces in size, making the replen-
ishment of A slower and therefore the interval between cycles increases. At
some point, the storage pool S is depleted and the episode terminates. The
length of the silent phase determines the size of S at the start of the following
episode, which in turn determines the episode length.

This model also attempts to address an aspect of the the exceptional data that
was ignored or unaccounted for in previous modeling studies. It is considered
a puzzling observation that there is almost no postsynaptic depression at the
end of the episode [4]. Rather, it sets in steeply afterwards to reach its maxi-
mum 1–1.5 min later, then relaxing slowly back over the entire silent phase to
reach once again the high level it had at the end of the episode (see [7], Fig.
4C). In agreement with these observations, the slow postsynaptic depression
is not causing the termination of episodes in our model. Instead, it removes
temporarily the hyperexcitability in the network, preventing episodes to be
started spontaneously before the storage pool is sufficiently replenished. The
model network displays an absolute refractory period regarding episode initia-
tion, in which episodes cannot even be triggered by external stimulation. The
same phenomenon is observed experimentally in the developing chick spinal
cord (see [7], Fig. 4B). Moreover, the slowly decaying postsynaptic depres-
sion modulates the amplitude of the spontaneous synaptic activities, which
increase during the silent phase until they reach a maximum just before the
initiation of a new episode. This description applies to both the developing
chick spinal cord and the dynamics of our model.

There has been success in modeling spontaneous activity on the network-
dynamics level. This was achieved by employing both slow and fast activity-
dependent network depression that act independently from each other [5].
However, it has proven challenging to show how such network dynamics can
emerge from neuron properties. This work is an attempt to provide such an
explanation, albeit with different dynamics than have been considered so far.
It suggests that the limited resources of synapses and their proposed internal
dynamics may lead to the typical activity patterns observed in hyperexcitable
networks of diverse architectures.
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Université Joseph Fourier, Grenoble, France

February 10, 2004

Abstract

We study the spike statistics of neurons in a network with dynamically

balanced excitation and inhibition. Our model, intended to represent a

generic cortical column, comprises randomly connected excitatory and in-

hibitory leaky integrate–and–fire neurons, driven by excitatory input from

an external population. The high connectivity permits a mean-field de-

scription in which synaptic currents can be treated as Gaussian noise, the

mean and autocorrelation function of which are calculated self-consistently

from the firing statistics of single model neurons. Within this descrip-

tion, we find that the irregularity of spike trains is controlled mainly by

the strength of the synapses relative to the difference between the firing

threshold and the post-firing reset level of the membrane potential. For

moderately strong synapses we find spike statistics very similar to those

observed in primary visual cortex.

1 Introduction

The observed irregularity and relatively low rates of the firing of neocortical neu-
rons suggest strongly that excitatory and inhibitory input are nearly balanced.
Such a balance, in turn, finds an attractive explanation in the mean-field de-
scriptions of Amit and Brunel [1, 2, 3] and Van Vreeswijk and Sompolinsky

1



[4, 5]. In their theories, the balance does not have to be put in “by hand”;
rather, it emerges self-consistently from the network dynamics. This success
encourages us to study firing correlations and irregularity in models like theirs
in greater detail. In particular, we would like to quantify the irregularity and
identify the parameters of the network that control it. This is important be-
cause one can not extract the signal in neuronal spike trains correctly without a
good characterization of the noise. Indeed, an incorrect noise model can lead to
spurious conclusions about the nature of the signal, as demonstrated by Oram
et al [6].

Response variability has been studied for a long time in primary visual cor-
tex [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and elsewhere [20, 17, 18, 21]. Most,
though not all, of these studies found rather strong irregularity. As an example,
we consider the findings of Gershon et al [17]. In their experiments, monkeys
were presented with flashed, stationary visual patterns for several hundred ms.
Repeated presentations of a given stimulus evoked varying numbers of spikes in
different trials, though the mean number (as well as the PSTH) varied system-
atically from stimulus to stimulus. The statistical objects of interest to us here
are the distributions of single-trial spike counts, for given fixed stimuli. Often
one compares the data with a Poisson model of the spike trains, for which the
count distribution P (n) = mne−m/n!. This distribution has the property that
its mean 〈n〉 = m is equal to its variance 〈δn2〉 = 〈(n − 〈n〉)2〉. However, the
experimental finding was that the measured distributions were quite generally
wider than this: 〈δn2〉 > m. Furthermore, collecting data for many stimuli, the
variance of the spike count was fit well by a power law function of the mean
count: 〈δn2〉 ∝ my, with y typically in the range 1.2 − 1.4, broadly consistent
with the results of many of the other studies cited above.

Some of this observed variance could have a simple explanation: The con-
dition of the animal might have changed between trials, so the intrinsic rate at
which the neuron fires might differ from trial to trial, as suggested by Tolhurst
et al [11]. But it is far from clear whether all the variance can be accounted
for in this way. Moreover, there is no special reason to take a Poisson process
as the null hypothesis, so we don’t even really know how much variance we are
trying to explain.

In this paper, we try to address the question of how much variability, or
more generally, what firing correlations can be expected as consequence of the
intrinsic dynamics of cortical neuronal networks. The theories of Amit and
Brunel and of van Vreeswijk and Sompolinsky do not permit a consistent study
of firing correlations. The Amit-Brunel treatment assumes that the input to
neurons is uncorrelated in time (white noise). Thus, although one can calculate
the variability of the firing [3], it is not self-consistent. Van Vreeswijk and
Sompolinsky use a binary-neuron model with stochastic dynamics which makes
it difficult, if not impossible, to study temporal correlations that might occur in
networks of spiking neurons. Therefore, in this paper we do a complete mean-
field theory for a network of leaky integrate-and-fire neurons, including, as self-
consistently-determined order parameters, both firing rates and autocorrelation
functions. A general formalism for doing this was introduced by Fulvi Mari [7]
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Figure 1: Structure of the model network.

and used for an all-excitatory network; here we employ it for a network with
both excitatory and inhibitory neurons. A preliminary study of this approach
for an all-inhibitory network was presented previously [22].

2 Model and Methods

The model network, indicated schematically in Fig. 1, consists of N1 excitatory
neurons and N2 inhibitory ones. In this work we use leaky integrate-and-fire
neurons, though the methods could be carried over directly to networks of other
kinds of model neurons, such as conductance-based ones. They are randomly
interconnected by synapses, both within and between populations, with the
mean number of connections from population b to population a equal to Kb,
independent of a. In specific calculations, we have used K1 from 400 to 6400,
and we take K2 = K1/4. The population sizes Na do not enter directly in the
mean field theory, only their ratios (the connection probabilities) Ka/Na. We
have used Ka/Na = 0.1 for both excitatory and inhibitory connections, implying
N1 = 4N2.

We scale the synaptic strengths in the way van Vreeswijk and Sompolinsky
did[4, 5], with each nonzero synapse from population b to population a having
the value Jab/

√
Kb. The parameters Jab are taken to be of order 1, so the net

input current to a neuron from the Kb neurons in population b connected to it
is of order

√
Kb. With this scaling, the fluctuations in this current are of order

1.
Similarly, we assume that the external input to any neuron is the sum of

K0 ≫ 1 contributions from individual neurons (in the LGN, if we are thinking
about modeling V1), each of order 1/

√
K0, so the net input is of order

√
K0. In

our calculations, we have used K0 = K1.
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We point out that this scaling is just for convenience in thinking about the
problem. In the balanced asynchronous firing state, the large excitatory and
inhibitory input currents nearly cancel, leaving a net input current of order 1.
Thus, for this choice, both the net mean current and its typical fluctuations
are of order 1, which is convenient for analysis. The physiologically relevant
assumptions are only that excitatory and inhibitory inputs are separately much
larger than their sum and that the latter is of the same order as its fluctuations.

Our synapses are not modeled as conductances. Our synaptic strength sim-
ply defines the amplitude of the postsynaptic current pulse produced by a single
presynaptic spike.

The model is formally specified by the sub-threshold equations of motion for
the membrane potentials ua

i (a = 1, 2, i = 1, . . .Na):

dua
i

dt
= −ua

i

τ
+

2
∑

b=0

Nb
∑

j=1

Jab
ij Sb

j (t), (1)

together with the condition that when ua
i reaches the threshold θa, the neuron

spikes and the membrane potential is reset to a value ua
r . The indices a or b = 1

or 2 label populations: b = 0 refers to the (excitatory) population providing
the external input, a = 1 refers to the excitatory population and a = 2 to
the inhibitory population. In (1), τ is the membrane time constant (taken the
same for all neurons, for convenience), the strength of the synapse from neuron
j in population b to neuron i in population a is denoted by Jab

ij , and Sb
i (t) =

∑

s δ(t − tsjb) is the spike train of neuron j in population b. We have ignored
transmission delays, and we take the thresholds θa = 1 and the reset levels ua

r

equal to the rest value of the membrane potential, 0. In our calculations, the
thresholds are given a Gaussian distribution with a standard deviation equal to
10% of the mean. Analogous variability in other single-cell parameters (such as
membrane time constants) could also be included in the model, but for simplicity
we do not do so here.

We assume that the neurons in the external input population (b = 0) fire as
independent Poisson processes. However, the neurons in the network (b = 1, 2)
are not in general Poissonian; it is their correlations that we want to find in this
investigation.

Mean Field Theory: Stationary States

We describe the mean field theory and its computational implementation first
for the case of stationary rates. When the connectivity is large and random, as
we will assume here, each of the three terms in the sum on b on the right-hand
side of (1) can be treated as a Gaussian random function with time-independent
mean. The simplest case is b = 0, the external input. For simplicity, we assume
that all N0 neurons in the external population fire at the same rate, r0. But
because of the random connectivity, the net time-averaged input current they
provide to a neuron in cortical population a can vary from neuron to neuron.

4



Assuming large, dilute connectivity (K0 ≫ 1 and K0 ≪ N0), the central limit
theorem then implies

〈Ia0

i (t)〉 =
∑

j

Ja0

ij r0 =
∑

j

(Ja0

ij + δJa0

ij )r0 = Ja0r0(
√

K0 + xa0

i ), (2)

where xa0

i is a Gaussian-distributed random number of unit variance. By 〈· · ·〉
we mean a time average or, equivalently, an average over “trials” (independent
repetitions of the Poisson processes defining the input population neurons). We
will generally use a bar over a quantity to indicate an average over the neuronal
population or over the distribution of the Jab

ij . (Note that these two kinds of
averages are very different things.)

Writing the spike train S0

j (t) for neuron j in the input population as

S0

j (t) = r0 + δS0

j (t), (3)

with 〈δS0

j (t)〉 = 0, we can write the fluctuations around 〈Ia0

i 〉 as

δIa0

i (t) =
∑

j

Ja0

ij δS0

j (t) = Ja0ξ
a0

i (t) (4)

where ξa0

i (t) is white noise of power r0:

〈ξa0

i (t)ξa0

i (t′)〉 = r0δ(t − t′) (5)

Thus, quite generally, the input has a large mean value, of order
√

K0, plus
Gaussian fluctuations of order 1. The fluctuations are of two kinds. One is
constant for a given neuron, independent of time and trial and arises from the
fact that the connectivity is random and the neurons in the input population
have a distribution of rates. The other fluctuation is a dynamical one, with
correlations (independent of i) reflecting the Poisson dynamics of the input
population neurons.

The recurrent input terms Iab
i (t) also have large means and fluctuations,

static and dynamic, of order 1, but certain features of their statistics are slightly
different, as a systematic formal derivation [7, 8] proves. Here we do not give
the derivation, but just describe the result, which is that Iab

i (t) can be written

Iab
i (t) = Jab[

√

Kbrb + Bbx
ab
i +

√

1 − Kb/Nbξ
ab
i (t)], (6)

with

rb = rb
j =

1

Nb

∑

j

rb
j . (7)

the average rate in population b, xab
i a unit-variance Gaussian random number,

Bb =

√

(

1 − Kb

Nb

)

(rb
j)

2 (8)
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and
〈ξab

i (t)ξab
i (t′)〉 = Cb(t − t′). (9)

Here Cb(t − t′) is the average autocorrelation function of the firing of neurons
in population b,

Cb(t − t′) =
1

Nb

∑

j

〈δSb
j (t)δS

b
j (t

′)〉, (10)

with
δSb

j (t) = Sb
j (t) − rb

j . (11)

Again, xab
i is time- and trial-independent, while the noise ξab

i (t) varies both in
time within a trial and randomly from trial to trial. Note that for this model a
correct and complete mean field theory has to include rate fluctuations, through

(rb
j)

2, and the firing correlations, given by Cb(t− t′), as well as the mean rates.

The means of the recurrent input currents Iab
i are completely analogous to

the mean term in Ia0

i , but the effective noise is different in three ways

1. The amplitude Bb of the static noise component (the second term) contains

a factor of the rms rate
√

(rb
j)

2, not rb as in (2). The same would be true

for the static input noise (b = 0) if we allowed a distribution of rates in the
input population. So this difference is not an essential one. It occurs only
because we made a simplifying assumption about the input population.
However, we are not allowed to assume that about the neurons in the
cortical network, which will always have a distribution of rates because of
the random connectivity.

2. The neurons providing the source of these currents are not generally Pois-
sonian, so their correlations appear in the statistics of the noise term.

3. The noise terms, both static and dynamic, have a factor
√

1 − Kb/Nb in
front of them. This can be understood in the following way: It is the
randomness in the synaptic connections in the network that generates
these noise terms in the effective single-neuron problem; in general, they

are proportional to (δJab
ij )2, which is equal to J2

ab(1 − Kb/Nb)/Nb in our

model. In the limit of full connectivity, Kb = Nb, all Jab
ij are equal and

there is no randomness. Therefore there is no noise, as guaranteed here
by this factor.

The self-consistency equations of mean field theory are simply the conditions
that the average output statistics of the neurons, ra, (ra

j )2 and Ca(t − t′) are
the same as those used to generate the inputs for single neurons using integrate-
and-fire neurons with synaptic input currents given by (2), (4) and (6).

In an equivalent formulation, the second term in (6) can be omitted if the
noise terms ξab

i (t) have correlations equal to the unsubtracted correlation func-
tion

Ctot

b (t − t′) =
1

Nb

∑

j

〈Sb
j (t)S

b
j (t

′)〉 (12)
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instead of (10). For |t−t′| → ∞, Ctot

b (t−t′) → (r2

j ), so ξab
i (t) acquires a random

static component of mean square value (rb
j)

2.

In still another way to do it, one can use the square of the average rate, r2

b

in place of (rb
j)

2 in Eq.(8) for Bb and employ noise with correlation function

C̃b(t − t′) =
1

Nb

∑

j

〈(Sb
j (t) − rb)(S

b
j (t

′) − rb)〉. (13)

For |t − t′| → ∞,

C̃b(t − t′) → (rb
j − rb)2 ≡ (δrb

j)
2. (14)

There are now two static random parts of Iab
i (t), one from the Bb term and

one from the static component of the noise. Their sum is a Gaussian random
number with standard deviation equal to Bb as given in (6). Thus these three
ways of generating the input currents are all equivalent.

The balance condition

In a stationary, low-rate state, the mean membrane potential described by (1)
has to be stationary. If excitation dominates, we have dua

i /dt ∝
√

K0, implying
a firing rate of order

√
K0 (or one limited only by the refractory period of the

neuron). If inhibition dominates, the neuron will never fire. The only way to
have a stationary state at a low rate (less than one spike per membrane time
constant) is to have the excitation and inhibition nearly cancel. Then the mean
membrane potential can lie a little below threshold, and the neuron can fire
occasionally due to the input current fluctuations. Thus, using (2) and (6), we
have

2
∑

b=0

Jab

√

Kbrb = O(1) (15)

or, up to corrections of O(1/
√

K0),

2
∑

b=0

Ĵabrb = 0 (16)

with Ĵab = Jab

√

Kb/K0. These are two linear equations in the two unknowns
ra, a = 1, 2, with the solution

ra =

2
∑

b=1

[Ĵ
−1

]abJb0r0, (17)

where Ĵ
−1 is the inverse of the 2 × 2 matrix with elements Ĵab, a, b = 1, 2. If

there is a stationary balanced state, the average rates of the excitatory and
inhibitory populations are given by (17) (in the large-N limit).
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This argument depends only on the rates, not on the correlations, and is
exactly the same as that given by Amit and Brunel and by Sompolinsky and
van Vreeswijk.

This calculation does not say whether this state is stable, however. To deter-
mine this, one can expand around this solution and examine the linear stability
of the fluctuations, as done for their model by van Vreeswijk and Sompolinsky
[5]. Here, we do not do this analytically, but rather check the stability of our
states numerically within our algorithm.

Numerical procedure

For integrate-and-fire neurons in a stationary state, the mean field theory can be
carried out analytically if a white-noise (Poisson firing) approximation is made
[1, 2, 3]. But if firing correlations are to be taken into account, it is necessary
to resort to numerical methods. Thus we simulate single neurons driven by
Gaussian synaptic currents, collect their firing statistics to compute the rates
ra, rate fluctuations (δra

j )2 and correlations Ca(t − t′), and then use these to
generate improved input current statistics. The cycle is repeated until the input
and output statistics are consistent. This algorithm was first used by Eisfeller
and Opper [23] to calculate the remanent magnetization of a mean field model
for spin glasses.

Explicitly, we proceed as follows. We simulate single excitatory and in-
hibitory neurons over “trials” 100 integration timesteps long. (We will call each
timestep a “millisecond”. We have explored using smaller timesteps and verified
that there are no qualitative changes in the results.) We start from estimates
of the rates given by the balance condition, which makes the net mean input
current vanish. Then the sum of the O(

√
Kb) terms in (2) and (6) vanishes,

leaving only the rate fluctuation and noise terms. We then run 10000 trials of
single excitatory and inhibitory neurons, selecting on each trial random values
of xab

i and ξab
i (t). Since at this point we do not have any estimates of either the

rate fluctuations (δrb
j)

2 or the correlations Cb(t− t′), we use r2

b in place of (rb
j)

2

in Eq.(8)for Bb and use white noise for ξab
i (t): Cb(t − t′) → rbδ(t − t′).

The random choice of xi from trial to trial effectively samples across the
neuronal populations, so we can then collect the statistics ra, (ra

j )2 (or, equiva-

lently, (δra
j )2), and Ca(t − t′) from these trials. These can be used to generate

an improved estimate of the input noise statistics to be used in (6) in a second
set of trials, which yields new spike statistics again. This procedure is iterated
until the input and output statistics agree. This may take up to several hun-
dred iterations, depending on network parameters and how the computation is
organized.

If one tries this procedure in its naive form, i.e., using the output statistics
directly to generate the input noise at the next step, it will lead to big oscillations
and not converge. It is necessary to make small corrections (of relative order
1/K0) to the previous input noise statistics to guarantee convergence.

When one computes statistics from the trials in any iteration, the simplest
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procedure involves calculating not (10), but rather C̃b(t − t′) (Eq.(13)). From
it, we can proceed in two ways. In the first, from its |t − t′| → ∞ limit we can

obtain (δrb
j)

2, and thereby (rb
j)

2 = r2

b + (δrb
j)

2 for use in calculating Bb in (8).

Subtracting this limiting value from C̃b(t− t′) give us Cb(t− t′) (which vanishes
for large |t − t′|) for use in generating the noise ξab

i (t). This is the first of the
three methods described above.

Alternatively, we can use the third method: At each step of our iterative
procedure we can generate noise directly with the correlations C̃b(t− t′) (which

are long-ranged in time) and use r2

b in place of (rb
j)

2 in calculating Bb (8).
We have verified that the two methods give the same results when carried out
numerically, though the second procedure converges more slowly.

While the true rates in the stationary case are time-independent and Ca(t, t′)
is a function only of t − t′, the statistics collected over a finite set of noise-
driven trials will not exactly have these stationarity properties. Therefore we
improve the statistics and impose time-translational invariance by averaging
the measured ra(t) and (δra

j (t))2 over t and averaging over the measured values
Ca(t, t′) with a fixed t − t′.

After the iterative procedure converges, so that we have a good estimate
of the statistics of the input, we want to run many trials on a single neuron
and compute its firing statistics. This means that the numbers xab

i (b = 0, 1, 2)
should be held constant over these trials. In this case it is necessary to subtract
out the large t − t′ limit of C̃a(t − t′) and use fixed xab

i (constant in time and
across trials) to generate the input noise. (If we did it the other way, without
the subtraction, we would effectively be assuming that xab

i changed randomly
from trial to trial, which is not correct.)

In our calculations we have used 10000 trials to calculate these single-neuron
firing statistics. We perform the subtraction of the long-time limit of C̃a(t− t′)
at |t − t′| = 50, and we have checked that (13) is flat beyond this point in all
the cases we have done.

If we perform this kind of measurement separately for many values of the
xab

i , we will be able to see how the firing statistics vary across the population.
Here, however, we will confine most of our attention to what we call the “average
neuron”: the one with the average value (0) of all three xab

i .
In particular, we calculate the mean spike count in the 100-ms trials and

its variance across trials. From this we can get the Fano factor F (the vari-
ance/mean ratio). We also compute the autocorrelation function, which offers
a consistency check, since the Fano factor can also be obtained from

F =
1

r

∫

∞

−∞

C(τ)dτ. (18)

(This formula is valid when the measurement period is much larger than the
time over which C(τ) falls to zero.)

We will study below how these firing statistics vary as we change various
parameters of the model: the input rates r0, parameters that control the balance
of excitation and inhibition, and the overall strength of the synapses. This will
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give us some generic understanding of what controls the degree of irregularity
of the neuronal firing.

Nonstationary Case

When the input population is not firing at a constant rate, almost the same
calculational procedure can be followed, except that one does not average mea-
sured rates, their fluctuations or correlation function over time. To start out,
we get initial instantaneous rate estimates from the balance condition, assuming
that the time-dependent average input currents do not vary too quickly. (This
condition is not very stringent; van Vreeswijk and Sompolinsky showed that the
stability eigenvalues are proportional to

√
K0, so if they have the right sign the

convergence to the balanced state is very rapid.)
To do the iterative procedure to satisfy the self-consistency conditions of the

theory, it is simplest to use the second of the two ways described above (not
doing any subtraction until the final calculations with single neurons). In this
case the expression (8) does not include rate fluctuations, and we get equations
for the noise input currents just like (2), (4) and (6) except that the rb are
t-dependent and the correlation functions Cb and Db depend on both t and t′,
not just their difference.

The only tricky part is the subtraction of the long-time limit of the correla-
tion function, which is not simply defined.

We treat this problem in the following way. We examine the rate-normalized
quantity

D̂a(t, t′) =
Da(t, t′)

ra(t)ra(t′)
. (19)

We find that this quantity is time-translation invariant (i.e., a function only
of t − t′) to a very good approximation, so we perform the subtraction of the
long-time limit on it. Then multiplying the subtracted D̂ by ra(t)ra(t′) gives
a good approximation to the true correlation function Ca(t, t′). The meaning
of this finding is, loosely speaking, that when the rates vary (slowly enough) in
time, the correlation functions just inherit these rates as overall factors without
changing anything else about the problem.

We will use the this time-dependent formulation below to simulate exper-
iments like those of Gershon et al [17], where the LGN input r0(t) to visual
cortical cells is time-dependent because of the flashing-on and off of the stimu-
lus.

3 Results

The results presented in this chapter were obtained from simulations with pa-
rameters corresponding to population sizes of N1 = 40,000 excitatory neurons
and N2 = 10,000 inhibitory neurons. With the above mentioned connection
probabilities of Ka/Na = 0.1, this translates to an average number of K1 = 4000
excitatory inputs and K2 = 1000 inhibitory inputs to each neuron. The average

10



number of external (excitatory) inputs K0 was chosen to be equal to K2. All
neurons have the same membrane time constant τ of 10 ms.

To study the effect of various combinations in synaptic strength, we use the
following generic form to define the intra-cortical weights Jab:

(

J11 J12

J21 J22

)

=

(

ǫ −2g
1 −2g

)

(20)

For the synaptic strengths from the external population we use J10 = 1 and
J20 = ǫ. With this notation, g determines the strength of inhibition relative
to excitation within the network, and ǫ the strength of intracortical excitation.
Additionally, we scale the overall strength of the synapses with a multiplicative
scaling factor denoted Js so that each synapse has an actual weight of Js · Jab,
regardless of a and b.

Figure 2 summarizes how the firing firing statistics depend on all of the
parameters g, ǫ, and Js. The irregularity of spiking, as measured by the Fano
factor, depends most sensitively on the overall scaling of the synaptic strength,
Js. The Fano factor increases systematically as Js increases, and higher values
of intracortical excitation ǫ also result in higher values of F . The same pattern
holds for stronger intracortical inhibition, parameterized by g. For all of these
cases the mean firing rate remains virtually unchanged due to the dynamic
balance of excitation and inhibition in the network, whereas the fluctuations
increase with the increase of any of the synaptic weights.

Interspike interval (ISI) distributions are shown in Figure 3 for three different
values of Js, keeping ǫ and g fixed at 0.5 and 1, respectively. For a Poisson spike
train, the Fano factor F = 1, while F > 1 (which we term “superpoissonian”)
indicates a tendency of spikes occurring in clusters separated by accordingly
longer empty intervals, and F < 1 (“subpoissonian”) indicates more regularity,
reflected by a narrower distribution. We have adjusted the input rate r0 so that
the output rate is the same in all three cases.

The top panel of Figure 3 shows the ISI distribution of a superpoissonian
spike train, obtained for Js = 1.5. Overlayed on the histogram of ISI counts
is an exponential curve indicating a Poisson distribution with the same mean
ISI length. Compared with the Poisson distribution, the superpoissonian spike
train contains more short intervals, as seen by the peak at short lengths, and
also more long intervals, causing a long tail. Necessarily, the interval count
around the average ISI length is lower than that for a Poisson spike train.

The ISI distribution in the middle panel of Figure 3 belongs to a spike train
with a Fano factor close to one, obtained for Js = 0.75. The overlayed exponen-
tial reveals a deviation from the ISI count: while intervals of diminishing length
are the most likely ones for a real Poisson process, our neuronal spike trains al-
ways show some refractoriness reflected by a dip at the shortest intervals. (We
have not used an explicit refractory period in our model. The dip seen here
simply reflects the fact that it takes a little time for the membrane potential
distribution to return to its steady-state form after reset.) Apart from this de-
viation, however, there is a close resemblance between the observed distribution
and the “predicted” one.
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Finally, the lower panel of Figure 3 depicts a case with F < 1, with weaker
synapses, leading to a stronger refractory effect and (since the rate is fixed) an
accordingly narrower distribution around the average ISI length, as compared
to the overlayed Poisson distribution. This distribution was obtained with weak
synapses produced by a small scaling factor of Js = 0.375.

As mentioned in the previous section, the Fano factor can also be obtained
by integrating over the spike train autocorrelation divided by the spike rate
(18). For a Poisson process the autocorrelation vanishes for all lags different
from zero. In contrast, F > 1 (superpoissonian case) implies a positive integral
over non-zero lags, whereas in the subpoissonian case there must be a negative
area under the curve. Figure 4 shows examples of autocorrelations for all of the
three cases. For the superpoissonian case (red dash-dot line), there is a “hill”
of positive correlations for short intervals, reflecting the tendency toward spike
clustering. The subpoissonian autocorrelation (blue dotted line) shows a valley
of negative correlations for short intervals, indicating well separated spikes in a
more regular spike train. The curve labeled as Poisson (black solid line) does
have a small valley around zero lag, which reflects once more the refractoriness
of neurons to fire at extremely short intervals, unlike a completely random
Poisson process. (Actually, the measured F in this case is slightly greater than
1, implying that in this case the integral of the very small positive tail for t > 2
ms is slightly larger than that of the (more obvious) negative short-time dip.)

Measurements on V1 neurons in awake monkeys (see for example Gershon
et al. [17]) suggest a linear relationship between the log variance and the log
mean of stimulus-elicited spike counts. We find a similar dependence for neurons
within our model network. Figure 5 shows results for three different values of
Js. In each case, five different values of the external input rate r0 were tried,
causing various mean spike counts and variances. The logarithm of the spike
count variance is plotted as a function of the logarithm of the spike count mean,
and a solid diagonal line indicates the identity, i.e, a Fano factor of exactly 1.
We see that for the largest value of Js used here, the data look qualitatively like
those from experiments, with Fano factors in the range around 1.5 to 2.

Nonstationary Case

The results presented in the previous section were obtained with stationary
inputs, while experimental data like those from [17] were collected from visual
neurons subject to time-dependent inputs. Therefore, we performed calculations
of the spike statistics in which the input population rate r0 was time-dependent.
The modeled temporal shape of r0(t) is depicted in Figure 6. It is the sum of
three terms:

r0(t) = R0 + A(t) + B(t) (21)

The first, R0, is just a constant, as in the preceding section. The second term,
A(t), rises to a maximum over a 25-ms interval, remains constant for 50 ms,
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A0 0.375 0.375 0.500 0.500 0.750 0.750 1.000 1.000
B0 0.125 0.375 0.125 0.375 0.250 0.750 0.250 0.750
F 1.14 1.2 1.22 1.23 1.29 1.36 1.37 1.4

A0 1.500 1.500 2.000 2.000 3.000 3.000 4.000 4.000
B0 0.500 1.500 0.500 1.500 1.000 3.000 1.000 3.000
F 1.48 1.5 1.55 1.53 1.57 1.41 1.43 1.34

Table 1: Stimulus parameters A0 and B0 for the results depicted in Figure 7,
and the resulting Fano factors F .

and then falls off to zero over the final 25 ms.

A(t) =







0.5A0(1 − cos(4tπ/T )) for 0 < t ≤ T/4
A0 for T/4 < t ≤ 3T/4
0.5A0(1 − cos(4(T − t)π/T )) for 3T/4 < t ≤ T ,

(22)

where T is the total simulation interval of 100 ms. The third term, B0, rises
to a maximum in the first 25 ms and then falls back to zero in the next 25 ms,
remaining zero thereafter.

B(t) =







0.5B0(1 − cos(4tπ/T )) for 0 < t ≤ T/4
0.5B0(1 − cos(4(T/2 − t)π/T )) for T/4 < t ≤ T/2
0 for T/2 < t ≤ T .

(23)

Figure 7 shows the logarithm of the spike count variance plotted against the
logarithm of the spike count mean for various non-stationary inputs character-
ized by different values of A0 and B0. The graph shows results for Js = 1,
ǫ = 0.5, g = 1, and a background rate of R0 = 0.1. Table 1 shows the choice of
the sixteen combinations of the stimulus parameters A0 and B0, together with
the resulting Fano factors F for the simulated neuron.

The data look qualitatively like those obtained from in-vivo experiments
[17] and are similar to the superpoissonian case in Figure 5. The neuron fires
consistently in a superpoissonian regime with Fano factors slightly higher than
1 and an almost linear relationship between the log variance and the log mean
for low spike counts. For higher spike counts, the curve bends towards values of
lower Fano factors, just as for stationary inputs (Figure 5). In both cases, this
bend reflects the the decrease in irregularity of firing caused by an increasingly
prominent role of refractoriness for shorter interspike intervals.

4 Discussion

Cortical neurons receive thousands of both excitatory and inhibitory inputs,
and despite the high number of inputs from nearby neurons with similar firing
statistics and similar connectivity, their observed firing is very irregular [9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Dynamically balanced excitation and
inhibition through a simple feedback mechanism provides an explanation that
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naturally accounts for this phenomenon without requiring fine tuning of the
parameters [1, 2, 3, 4, 5]. Moreover, neurons in such model networks show an
almost linear input-output relationship (input current versus firing frequency),
as do neurons in the neocortex.

Here, we have extended the mean-field description of the dynamically bal-
anced asynchronous firing state to analyze firing correlations. We found that
the relationship between the observed irregularity of firing (spike count vari-
ance) and the firing rate (spike count mean) of the neurons resemble closely
data collected from in-vivo experiments (see Figures 5 and 6). To do this, we
developed a complete mean-field theory for a network of leaky integrate-and-
fire neurons, in which both firing rates and correlation functions are determined
self-consistently. Using an algorithm that allows us to find the solutions to
the mean-field equations numerically, we could elucidate how the strength of
synapses within the network influences the expected firing statistics of cortical
neurons in a systematic manner (see Figure 2).

We have shown that the irregularity of firing, as measured by the Fano
factor, increases with increasing synaptic strengths (Figure 2). Nearly Poisson
statistics (with F ≈ 1) are observed for moderately strong strengths, but the
transition from subpoissonian to superpoissonian statistics is smooth, without
a special role for F = 1.

The higher irregularity in the spike counts is always accompanied by a ten-
dency toward more “bursty” firing. (These bursts are a network effect; the
model contains only leaky integrate-and-fire neurons, which do not burst on
their own.) This burstiness can best be seen in the spike train autocorrelation
function (Figure 4), which acquires a hill of growing size and width around zero
lag for increasing Fano factors. The interdependence between firing irregular-
ity and bursting can be understood with help of the ISI distributions depicted
in Figure 3: when the rate, and thus the average ISI, is kept constant, then
any higher count for shorter-than-average ISIs must be accompanied by an ac-
cordingly higher count for longer ISIs (indicating bursts), and vice versa. Thus
higher irregularity always goes hand in hand with a higher tendency toward
temporal clustering of spikes.

Why do stronger synapses lead to higher irregularity in firing? The size of
the input current fluctuations in (6) are controlled by the Jab, and so, therefore,
are the corresponding membrane potential fluctuations. Thus, for example, the
width of the steady-state membrane potential distribution is proportional to
Js. We next have to consider where this distribution is centered. Remembering
that, according to the balance condition, the firing rate is independent of Js,
the center of the distribution has to move farther away from threshold as Js is
increased in order to keep the rate fixed. Therefore, for very small Js almost
the entire equilibrium membrane potential distribution will lie well above the
post-spike reset value, while for large Js it will be mostly below reset.

Immediately after a spike, the membrane potential distribution is a delta-
function centered at the reset (here 0). It then spreads and its mean moves
up or down toward its equilibrium value. This equilibration will take about
a membrane time constant. If the equilibrium value is well above zero (the
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small-Js case), the probability of reaching threshold will be suppressed during
this time, implying a refractory dip in the ISI distribution and the correlation
function and a tendency toward a Fano factor less than 1.

In the large-Js case, on the other hand, where the membrane potential is
reset much closer to the threshold than to its eventual equilibrium value, the
initial rapid spread (with the width growing proportional to Js

√
t) leads to

an enhanced probability of early spikes. At short times this diffusive spread
dominates the downward drift of the mean (which is only linear in t). Thus
there is extra weight in the ISI distribution and a positive correlation function
at these short times, leading to a Fano factor greater than 1.

Empirically, an approximate power-law relationship between the mean and
variance of the spike count has frequently been observed for cortical neurons (see,
e.g., [11, 13, 17, 20]). Our model shows the same qualitative feature (Figures 5
and 6), though we have no argument that the relation should be an exact power
law. However, this agreement suggests that the model captures at least part of
physics underlying the firing statistics.

As already observed, not all of the variability in measured neuron responses
has to be explained in the manner outlined above. Changing conditions dur-
ing the run of a single experiment may introduce extra irregularity, caused by
collecting statistics over trials with different mean firing rates. The present anal-
ysis shows why – and how much – irregularity can be expected due to intrinsic
cortical dynamics.

Our formulation of the mean-field theory is general enough to allow straight-
forward extensions to greater biological realism and to more complicated net-
work architectures. We have introduced a generalization of this model with
conductance-based synapses in another paper [24]. We have also extended the
model to include systematic structure in the connections, modeling an orienta-
tion hypercolumn in the primary visual cortex [25]. Moreover, our algorithm for
finding the mean-field solutions is not restricted to networks of integrate-and-
fire neurons. It can be applied to any kind of neuronal model. Furthermore,
any kind of synaptic dynamics can be incorporated by using synaptically filtered
spike trains to compute the self-consistent solutions.
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Figure 2: Fano factors as a function of overall synaptic strength Js

and intracortical excitation strength ǫ for three different inhibition
factors: g = 1, 1.5, and 2, respectively. The increase of any
of these parameters results in more irregular firing statistics as
measured by the Fano factor.
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Figure 3: Interspike interval distributions for fixed ǫ = 0.5
and g = 1, and three different values of overall synaptic
strength Js: 1.5 (superpoissonian), 0.75 (Poissonian), and
0.375 (subpoissonian). Overlayed on each figure is the expo-
nential fall-off of a true Poisson distribution with the same
average rate as in all of the three cases.
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F > 1 (superpoissonian, red dash-dot line) is reflected by a hill generating a
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Figure 6: Parametrization of the time-dependent input rate r0(t). The input is
modeled as the sum of three functions: (1) a stationary background rate (which
is zero in this case); (2) a tonic part, which rises within the first 20 ms to a
constant level of A0 where it stays for 60 ms, falling back to zero within the last
20 ms; and (3) an initial phasic part, which is nonzero only in the first 50 ms,
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High Conductance States in a Mean Field

Cortical Network Model

Alexander Lerchner Mandana Ahmadi John Hertz

Nordita, Blegdamsvej 17, 2100 Copenhagen, Denmark

Abstract

Measured responses from visual cortical neurons show that spike times tend to be
correlated rather than exactly Poisson distributed. Fano factors vary and are usually
greater than 1 due to the tendency of spikes being clustered into bursts. We show
that this behavior emerges naturally in a balanced cortical network model with ran-
dom connectivity and conductance-based synapses. We employ mean field theory
with correctly colored noise to describe temporal correlations in the neuronal activ-
ity. Our results illuminate the connection between two independent experimental
findings: high conductance states of cortical neurons in their natural environment,
and variable non-Poissonian spike statistics with Fano factors greater than 1.

Key words: synaptic conductances, response variability, cortical dynamics

1 Introduction

Neurons in primary visual cortex show a large increase in input conductance

during visual activation: in vivo recordings (see, e.g., [1]) show that the con-

ductance can rise to more than three times that of the resting state. Such high

conductance states lead to faster neuronal dynamics than would be expected

from the value of the passive membrane time constant, as pointed out by Shel-

ley et al. [2]. We use mean field theory to study the firing statistics of a model

network with balanced excitation and inhibition and observe consistently such

high conductance states during stimulation.

In our study, we classify the irregularity of firing with the Fano factor F ,

defined as the ratio of the variance of the spike count to its mean. For tem-

Email addresses: lerchner@nordita.dk (Alexander Lerchner), ahmadi@nordita.dk
(Mandana Ahmadi), hertz@nordita.dk (John Hertz).
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porally uncorrelated spike trains (i.e., Poisson processes) F = 1, while F > 1

indicates a tendency for spike clustering (bursts), and F < 1 points to more

regular firing with well separated spikes. Observed Fano factors for spike trains

of primary cortical neurons during stimulation are usually greater than 1 and

vary within an entire order of magnitude (see, e.g., [3]). We find the same

dynamics in our model and are able to pin-point the relevant mechanisms:

synaptic filtering leads to spike clustering in states of high conductance (thus

F > 1), and Fano factors depend sensitively on variations in both threshold

and synaptic time constants.

2 The Model

We investigate a cortical network model that exhibits self-consistently bal-

anced excitation and inhibition. The model consists of two populations of

neurons, an excitatory and an inhibitory one, with dilute random connectiv-

ity. The model neurons are governed by leaky integrate-and-fire subthreshold

dynamics with conductance-based synapses. The membrane potential of neu-

ron i in population a (a = 1, 2 for excitatory and inhibitory, respectively)

obeys

dui
a(t)

dt
= −gLui

a(t) −
2

∑

b=0

Nb
∑

j=1

gij
ab(t)(u

i
a(t) − Vb). (1)

The first sum runs over all populations b, including the excitatory input pop-

ulation representing input from the LGN and indexed by 0. The second sum

runs over all neurons j in population b of size Nb. The reversal potential Vb

for the excitatory inputs (b = 0, 1) is higher than the firing threshold, the one

for the inhibitory inputs (V2) is below the reset value. The constant leakage

conductance gL is the inverse of the membrane time constant τm.

The time dependent conductance gij
ab(t) from neuron j in population b to

neuron i in population a is taken as

gij
ab(t) =

g0

ab√
Kb

∑

s

exp(−(t − tjs)/τb)Θ(t − tjs) (2)

if there is a connection between those two neurons, otherwise zero. The sum

runs over all spikes s emitted by neuron j, τb is the synaptic time constant for

the synapse of type b (excitatory or inhibitory), and Θ is the Heavyside step

function. Kb denotes the average number of presynaptic neurons in population

b. We followed van Vreeswijk and Sompolinsky [4] by scaling the conductances

2



with 1/
√

Kb so that their fluctuations are of order one, independent of network

size.

3 Mean Field Theory

We use mean field theory to reduce the full network problem to two neurons:

one for each population. This method is exact in the limit of large popu-

lations with homogeneous connection probabilities [5]. The neurons receive

self-consistent inputs from their cortical environment, exploiting the fact that

all neurons within a population exhibit the same firing statistics due to ho-

mogeneity. The time dependent conductance described in (2) can then be

replaced by a realization of a Gaussian distributed random variable gab with

mean

〈gab〉 = g0

ab

√

Kb rb, (3)

and covariance

〈δgab(t) δgab(t
′)〉 = (g0

ab)
2(1 − Kb/Nb) Cb(t − t′), (4)

Here, rb is the firing rate of the presynaptic neuron b, and Cb(t − t′) is the

autocorrelation function of its spike train. A simple approximation of the

autocorrelation, like the one used by [6] and [7], is to assume gab(t) to be

temporally uncorrelated (i.e., white noise), in which case it simplifies to Cb(t−
t′) = rb δ(t− t′). The term (1−Kb/Nb) is a correction for the finite connection

concentration Kb/Nb and can be derived using the methods of [8].

The self-consistent balance condition is obtained by setting the net current

in (1) to zero when the membrane potential is at threshold θa and the con-

ductances have their mean values (3). In the large Kb-limit, it reads

2
∑

b=0

g0

ab

√

Kb rb (θa − Vb) = 0. (5)

The distribution of the variables gab can be calculated numerically using an

iterative approach [9]. One starts with a guess based on the balance equa-

tion (5) for the means and covariances and generates a large sample of specific

realizations of gab(t), which are used to integrate (1) to generate a large sample

of spike trains. The latter can then be used to calculate new estimates of the

means and covariances by applying (3) and (4) and correction of the initial

guess towards the new values. These steps are repeated until convergence.

3



−40 −30 −20 −10 0 10 20 30 40 50
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time Shift [ms]

White Noise
Colored Noise

Fig. 1. Autocorrelation functions for white noise (blue) and colored noise (red). The
white noise approximation underestimates the amount of temporal correlation in
the neuron’s firing.

4 Results

For the above described model, we chose parameters corresponding to popula-

tion sizes of 16,000 excitatory neurons and 4,000 inhibitory neurons, represent-

ing a small patch of layer IV cat visual cortex. The neurons were connected

randomly, with 10% connection probability between any two neurons. The

firing threshold was fixed to 1, excitatory and inhibitory reversal potentials

were set to +14/3 and −2/3, respectively, and the membrane time constant

τm = g−1

L was 10 ms. For the results presented here, the integration time step

was 0.5 ms.

Figure 1 illustrates the importance of coloring the noise produced by intra-

cortical activity. The white noise approximation underestimates both the cor-

relation times and the strength of the correlations in the neuron’s firing: its

autocorrelation (blue) is both narrower and weaker than the one for colored

noise (red).

Fano factors vary systematically with both the distance between reset and

threshold and the synaptic time constant τs. Non-zero synaptic time constants

produced consistently Fano factors greater than one. We varied the reset be-

tween 0.8 and 0.94 and τs between 0 and 6 ms, which resulted in values for F
that span an entire order of magnitude, from slightly above 1 to approximately
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Fig. 2. Fano factors for a range of reset values and synaptic time constants τs.
Longer synaptic time constants lead to increased clustering (bursts) of spikes, which
is reflected in higher Fano factors.

10 for τs ≥ 2 ms (see Figure 2).

5 Discussion

In all our simulations, we observed that the membrane potential changed on a

considerably faster time scale than the membrane time constant τm = 10 ms.

This behavior is only observed if conductance-based synapses are included in

the integrate-and-fire neuron model. To understand this phenomenon, it is

convenient to follow the notation of Shelley et al. [2] to rewrite the equation

for the membrane potential dynamics (1) in the following form:

dua(t)

dt
= −gT (t) (ua(t) − VS(t)) , (6)

with the total conductance gT (t) = gL +
∑

b gab(t), and the effective reversal

potential VS(t) = gT (t)−1
∑

b gab(t)Vb. The membrane potential ua(t) follows

the effective reversal potential with the input dependent effective membrane

time constant gT (t)−1. The effective reversal potential changes on the time

scale of the synaptic time constants, which are up to five times shorter than τm

in our simulations. However, if the effective membrane time constant is shorter
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membrane potential recovers fast enough to spike several times while VS(t) stays
above threshold, thus producing bursts of spikes. Here, the threshold is set to 1 and
the reset to 0.94.

than the synaptic time constant due to a large enough total conductance, then

ua(t) can follow VS(t) closely, as observed in our simulations (see Figure 3).

In high conductance states, the firing statistics are strongly influenced by

synaptic dynamics (see Figure 2). This is in contrast with strictly current

based models, where the neuron reacts too slow to reflect fast synaptic dy-

namics in its firing. The ‘synaptic filtering’ of arriving spikes leads to temporal

correlations in VS(t) and thus to temporal correlations (by way of spike clus-

tering) in firing. Therefore, the model neurons receive temporally correlated

input rather than white noise. For this reason, in mean field models dealing

with conductance based dynamics, coloring the noise is important to arrive

at the full amount of temporal correlation in firing statistics (see Figure 1).

We confirmed these considerations by running simulations without synaptic

filtering (τs = 0). As expected, intra-cortical activity became uncorrelated and

the white noise approximation produced the same result as coloring the noise

correctly. In that case, Fano factors stayed close to 1 (see Figure 2), i.e, no

tendency of spike clustering was observed.

Previous investigations showed that varying the distance between threshold

and reset in balanced integrate-and-fire networks has a strong effect on the

irregularity of the firing [10]. By including a conductance-based description of

6



synapses, we were now able to show the importance of synaptic time constants

on firing statistics, even if they are several times smaller than the passive

membrane time constant: Synaptic filtering facilitates clustering of spikes in

states of high conductance.
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Abstract. We present a complete mean field theory for a balanced state of a simple

model of an orientation hypercolumn. The theory is complemented by a description

of a numerical procedure for solving the mean-field equations quantitatively. With

our treatment, we can determine self-consistently both the firing rates and the firing

correlations, without being restricted to specific neuron models. Here, we solve the

analytically derived mean-field equations numerically for integrate-and-fire neurons.

Several known key properties of orientation selective cortical neurons emerge naturally

from the description: Irregular firing with statistics close to – but not restricted to

– Poisson statistics; an almost linear gain function (firing frequency as a function of

stimulus contrast) of the neurons within the network; and a contrast-invariant tuning

width of the neuronal firing. We find that the irregularity in firing depends sensitively

on synaptic strengths. If Fano factors are bigger than 1, then they are so for all

stimulus orientations that elicit firing. We also find that the tuning of the noise in the

input current is the same as the tuning of the external input, while that for the mean

input current depends on both the external input and the intracortical connectivity.

Submitted to: Network: Computation in Neural Systems

1. Introduction

Neurons in primary visual cortex (V1) fire highly irregularly in response to visual stimuli,

but with reproducible firing rates. They do so despite the fact that they receive synaptic

input from thousands of other cortical neurons, which would lead to fluctuations in

the input that were small compared to the mean if excitatory and inhibitory inputs

were not balanced [1]. There has been some success in describing how such a balance

can emerge self-consistently from dynamics that are plausible for cortical networks.

This was accomplished by mean field-descriptions by van Vreeswijk and Sompolinsky

[2, 3] and Amit and Brunel [4, 5, 6]. However, their treatments do not permit a self-

consistent calculation of firing correlations. How to do this correctly was first shown



Mean field theory for a balanced hypercolumn model in V1 2

for an all-inhibitory network by Hertz et al. [7] using the systematic formulation of

mean field theory due to Fulvi Mari [8]. In a recent paper [9] we presented a mean-field

theory for a balanced network model that allowed us to quantify how the irregularity in

firing and, more generally, the firing correlations depend on intrinsic network properties

such as synaptic strengths. The analysis was applied to a statistically homogeneous

network, representing a cortical column composed of neurons with similar response

characteristics. Here, we show how to extend this treatment to networks with systematic

structure, consisting of multiple cortical columns. In particular, we model an orientation

hypercolumn, composed of a set of orientation columns.

An orientation column contains neurons that respond strongest to elongated visual

stimuli of a specific orientation, the preferred orientation (PO). Orientation selective

neurons exhibit a tuned response to other orientations, with sharply decreasing firing

rates as the similarity between PO and stimulus orientation decreases, until the firing

is completely suppressed for orientations outside the tuning width of the neuron in

question. An important feature of orientation tuning is that the tuning width is

independent of the stimulus contrast [10]. It is not possible to capture this feature

in a single-neuron description using a Hubel and Wiesel feed-forward connectivity [11]

from the lateral geniculate nucleus (LGN); rather, cortical interactions are needed to

achieve contrast-invariant tuning (for review see [12]). Ben-Yishai et al [13] proposed a

model for which the tuning width is independent of the contrast, but a threshold-linear

relationship between input current and firing rate was an assumption of the model, and

the problem of the firing statistics was not addressed.

Here, we show how a contrast-invariant tuning width, an almost linear input-

output relationship, and irregular firing can all be explained by a balanced hypercolumn

model. With our mean-field treatment, we can quantify how certain network properties

like synaptic strengths, tuning of the LGN input and of the intracortical connectivity

influence the statistics and tuning of the neuronal firing. Using the Fano factor F (the

ratio of spike count variance and mean spike count) to quantify the irregularity in firing,

we find, e.g., that if F is significantly greater than 1 the orientation tuning of F reaches

a maximum at the PO (Fano factors greater than 1 are normally observed for neurons in

V1 [14]). We also make quantitative predictions about the tuning of the input currents

and their fluctuations.

2. Model and Methods

We model a single orientation hypercolumn in primary visual cortex, with a simplified

network architecture as indicated in Figure 1. The network comprises an excitatory

population and an inhibitory one, of sizes N1 and N2, respectively. Each population is

divided into n sub-populations (orientation columns), parameterized by an angle θ. The

angles, spaced equally between −π/2 and π/2, indicate the preferred orientation (PO),

to which the neurons in the corresponding column respond strongest.

We use leaky integrate-and-fire neurons and interconnect them randomly with a
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Figure 1. Structure of the model network. The hypercolumn consists of multiple

orientation columns, each of which has an excitatory and an inhibitory subpopulation

and is assigned a preferred orientation (PO) θ. Columns with more similar POs share

on average more connections than more dissimilar ones (the density of connections is

indicated only between one column and the rest, for clarity). The network receives

excitatory external input, weakly tuned to the stimulus orientation θ0. The inset

shows a sketch for the connectivity and connection strengths Jab within an orientation

column.

connection probability Pab(θ − θ′) that depends on the similarity of the POs. The

probability that a neuron with PO θ (in population a) receives afferent input from a

neuron with PO θ′ in population b is taken as

Pab(θ − θ′) =
Kb

Nb

(1 + γ cos 2(θ − θ′)) , (1)

where Kb is the expected overall number of inputs from neurons in population b. We take

the ratio Kb/Nb independent of b, i.e., excitatory and inhibitory neurons interconnect

with the same probability in our model. The functional form of (1) is motivated by

anatomical evidence that the connection probability between cortical neurons decreases

as their distance increases, and by the fact that orientation columns with similar PO

tend to lie closer together on the cortical surface than ones with dissimilar PO. We

followed Ben-Yishai et al. [13] in choosing the simplest possible form that is periodic

with period π. We assume that the degree of tuning, as measured by the parameter

γ ∈ (0, 1), is the same for both the inhibitory and the excitatory population.

Each nonzero synapse from a neuron in population b to one in population a is taken

to have strength

Jaθ,bθ′

ij =
Jab√
Kb

(2)

where the parameters Jab are of order 1. With this scaling, the fluctuations in the input

current are also of order 1, the same order as the distance between reset and threshold

of our model neurons (cf. van Vreeswijk and Sompolinsky [2, 3]).
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The subthreshold dynamics of the membrane potentials are given by

duaθ
i (t)

dt
= −uaθ

i (t)

τ
+ Iext

aθ (θ0) + Iaθ,rec
i (t), (3)

where the membrane time constant τ is chosen to be the same for all neurons. The

excitatory external input from the LGN, Iext

aθ (θ0), is assumed to be (weakly) tuned to

the orientation θ0 of the stimulus due to a feed-forward connectivity from the LGN as in

the classical model by Hubel and Wiesel [11]. For simplicity, we take it to be constant

in time and the same for all neurons i within a column. The functional form we use is,

similar to the tuning (1) of the intracortical connectivity,

Iext

aθ (θ0) = Iext

a (1 + ǫ cos 2(θ − θ0)), (4)

where ǫ ∈ (0, 1) is the degree of tuning, which is assumed to be the same for both

populations. (The condition ǫ < 1 assures Iext

aθ (θ0) to be non-negative, i.e. excitatory,

for all orientations). A more detailed model for this external input current, including

temporal fluctuations and random connectivity, was briefly described in an overview

article by Hertz et al. [15].

The recurrent input Iaθ,rec
i (t) from within the model cortex is given by

Iaθ,rec
i (t) =

2
∑

b=1

θn
∑

θ′=θ1

Nb/n
∑

j=1

Jaθ,bθ′

ij Sbθ′

j (t), (5)

where Sbθ′

j (t) =
∑

s δ(t− tsjθ′b) is the spike train of neuron j with PO θ′ in population b.

Mean Field Theory

In the following mean-field description of the orientation hypercolumn model, we

consider stationary firing only, for simplicity. However, the formulation is general enough

to allow for non-stationary rates. We presented such a time-dependent treatment for a

balanced single-column model elsewhere [9].

Because of the dilute random connectivity, each neuron receives a high number of

uncorrelated inputs (we assume Kb to be large, but smaller than Nb). According to

the central limit theorem, the recurrent input currents given by (5) can therefore be

described as Gaussian random processes. For stationary rates, the mean input current

is constant in time for any given neuron, although the level of the mean does vary from

neuron to neuron due to the random connectivity. In a general mean-field theory, one

must consider temporal correlations in these currents, i.e., not restrict the description

of the random processes to white noise.

To separate the mean of the currents from their fluctuations (“noise”), it is

convenient to apply such separations to the description of both the synaptic weights

Jaθ,bθ′

ij and the spike trains Sbθ′

j (t) in (5). For the weights we can write

Jaθ,bθ′

ij = Jaθ,bθ′

ij + δJaθ,bθ′

ij , (6)



Mean field theory for a balanced hypercolumn model in V1 5

where the bar means averaging over the index j, i.e., the neurons in the source

population:

Jaθ,bθ′

ij =
1

Nb/n

Nb/n
∑

j=1

Jaθ,bθ′

ij (7)

Generally, we use the bar-notation for averaging over neuron populations, which will

always apply to the running index j in this work. To separate the spike trains into

static and dynamic components, we write

Sbθ′

j (t) = rb(θ
′) + δrbθ′

j + δSbθ′

j (t), (8)

where rb(θ
′) = rbθ′

j = 1/(Nb/n)
∑

j rbθ′

j is the average rate of the neurons in sub-

population θ′ of population b. The difference between this average rate and the actual

rate of neuron j is denoted δrbθ′

j . These two components are both static, describing

time-averaged quantities. The temporal fluctuations of the spike train and their possible

correlations in time are captured by the third term on the right-hand side of (8), δSbθ′

j (t).

Using the central limit theorem and methods like those in [8] and [16] we can then derive

the following mean-field formulation of the recurrent current:

Irec

aθ (t) =
2
∑

b=1

Jab

(

√

KbAb +
√

1 − Kb/NbBb(t)
)

, (9)

with

Ab =
1

n

θn
∑

θ′=θ1

(1 + γ cos 2(θ − θ′))rb(θ
′) (10)

Bb(t) =
1

n

θn
∑

θ′=θ1

√

1 + γ cos 2(θ − θ′)
(

(

(rbθ′

j )2

)
1

2 xbθ′ + ξbθ′(t)
)

(11)

where the values xbθ′ are drawn from a unit-variance normal distribution. Selecting

specific values xbθ′ effectively samples different neurons within the column population.

We have dropped the neuron index i because this statistical description of the input

current reduces the network problem to single neuron problems – one for each column

population, indexed by aθ. The terms ξbθ′(t) stand for realizations of Gaussian random

processes obeying

〈ξbθ′(t)ξbθ′(t
′)〉 = Cbθ′(t − t′). (12)

Here, Cbθ′(t− t′) denotes the average autocorrelation function of the fluctuations in the

spike trains of neurons with PO θ′ in population b, given by

Cbθ′(t − t′) =
1

Nb/n

Nb/n
∑

j=1

〈δSbθ′

j (t)δSbθ′

j (t′)〉. (13)

With the operation 〈·〉 we mean averaging over realizations of random processes, such as

stochastic spike trains. We will refer to such realizations as “trials” since they represent

(responses to) repeated presentations of the same stimulus in experimental settings.
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The balance condition

The input currents from the excitatory population and the inhibitory population have

mean values of order
√

K1 ≫ 1 and
√

K2 ≫ 1, respectively (see Equation (9)). In

addition, for the external input current (4) we take Iext

a =
√

K0Î
ext

a with
√

K0 ≫ 1. If the

neurons are to exhibit irregular firing at a low rate, as cortical neurons do, these currents

must nearly cancel and threshold crossings have to be caused by the fluctuations in the

currents, which are of order 1. For our orientation hypercolumn model, this balance

condition implies that the average input currents in (3) have to add up to zero for each

orientation column θ:
√

K0Î
ext

a (1 + ǫ cos 2(θ − θ0)) +
2
∑

b=1

Jab

√

KbAb = O(1), (14)

where Ab is defined in (10). Here, we have ignored the contribution of the leakage

current (the first term on the right-hand side of (3)), because it is small compared to

the input currents, and because the balance condition (14) holds only up to corrections

of O(1).

To solve these equations, we consider a continuum formulation for the weighted

average over all angles instead of the discrete formulation in (10) and write

Ab =
∫ π/2

−π/2

dθ′

π
(1 + γ cos 2(θ − θ′))rb(θ

′). (15)

Then (14) becomes a pair of integral equations for ra(θ).

In the broadly tuned case (all orientation columns respond with non-vanishing mean

rates to every stimulus orientation), these integral equations can be solved directly. To

do so, we perform a Fourier expansion centered at θ0 of the mean rate within orientation

column θ′ and write rb(θ
′) = rb,0 + rb,2 cos 2(θ′ − θ0) + · · ·. For both the input current

and the connection probabilities, we have already used such Fourier notations with the

fewest possible terms to retain a periodic function with period π. Due to that choice,

all higher Fourier components for the mean currents vanish as well, and we get

√

K0Î
ext

a (1 + ǫ cos 2(θ − θ0)) +
2
∑

b=1

√

KbJab[rb,0 +
1

2
γrb,2 cos 2(θ − θ0)] = 0. (16)

By solving for each of the two Fourier components of the mean rates separately, we

obtain

ra,0 = −
2
∑

b=1

(Ĵ
−1

)abÎ
ext

b (17)

ra,2 = − 2ǫ

γ

2
∑

b=1

(Ĵ−1)abÎ
ext

b =
2ǫ

γ
ra,0, (18)

where the matrix Ĵ is composed of the elements Ĵab = Jab

√

Kb/K0. Firing rates have to

be non-negative, so this solution can only be valid for ǫ ∈ (0, γ/2]. However, such

a broad tuning is not normally observed for cortical neurons. Rather, orientation

sensitive neurons tend to be more “narrowly tuned”, with firing suppressed for stimulus
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orientations θ0 that differ too much from the neuron’s preferred orientation θ: ra = 0

for |θ − θ0| ≥ θc for some tuning width θc. Within the parameter regime ǫ ∈ (γ/2, γ]

we find such narrowly tuned solutions to our model. The tuning width θc turns out to

be the same for both excitatory and inhibitory neurons, which is a consequence of the

population-independence of the tuning parameters ǫ and γ.

To find the solutions for the narrowly tuned case, we use our insight from the

broadly tuned case and make the ansatz

rb(θ
′) =

{

rb,0 + rb,2 cos 2(θ′ − θ0) for |θ′ − θ0| < θb
c

0 for |θ′ − θ0| ≥ θb
c,

(19)

where θb
c = −1/2 cos−1(rb,0/rb,2). As mentioned above, since we have assumed equal

tuning in (1), θb
c is the same for both b. Thus, in (15) the integration is restricted to

|θ′ − θ0| < θc. Because rb(θ
′) = 0 at θ′ − θ0 = θc, we can rewrite the part of the ansatz

for |θ′ − θ0| < θc in the form

rb(θ
′) = rb,2(cos 2(θ′ − θ0) − cos 2θc). (20)

With this approach, we can indeed find solutions for the tuning width and the rates

from the balance condition (14). Analogous to the solution for the broadly tuned case

(16), now the total mean-input current can be expressed as

〈Iaθ,tot〉 =
√

K0Î
ext

a (1 + ǫ cos 2(θ − θ0))

+
2
∑

b=1

√

KbJab[rb,2f0(θc) + γrb,2f2(θc) cos 2(θ − θ0)],
(21)

where

f0(θc) =
∫ θc

−θc

dθ′

π
(cos 2θ′ − cos 2θc) =

1

π
(sin 2θc − 2θc cos 2θc) (22)

f2(θc) =

∫ θc

−θc

dθ′

π
cos 2θ′(cos 2θ′ − cos 2θc) =

1

π
(θc −

1

4
sin 4θc). (23)

(We have borrowed the notation from Ben-Yishai et al. [13] who studied a different kind

of model that contains similar expressions; see also [17]). Again, the total current (21)

has to vanish for all orientation columns θ, so both the constant and the cos 2(θ − θ0)

terms vanish separately:

Îext

a +
2
∑

b=1

Ĵabrb,2f0(θc) = 0 (24)

ǫÎext

a + γ
2
∑

b=1

Ĵabrb,2f2(θc) = 0 (25)

Dividing (24) by (25) yields

f2(θc)

f0(θc)
=

ǫ

γ
, (26)

which can be solved for θc. Note that (26), and thus the tuning width of the mean rates,

does not depend on the overall strength of the input, Iext

a (i.e., the “contrast” of the

stimulus). We find therefore contrast-invariant tuning of the mean rates as a result of
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cortical interactions, in agreement with experimental findings [10]. Having calculated

θc, we can find the mean rates with help of (24), via

ra,2 = − 1

f0(θc)

2
∑

b=1

(Ĵ−1)abÎ
ext

b , (27)

and by using the equality ra,0 = −ra,2 cos 2θc.

The above calculations show how cortical interactions are responsible for a

narrowing of the tuning of the population firing rates, relative to the tuning of the

input to the network. We can proceed one step further in our analytical treatment of

the mean-field model and consider the tuning of the neuronal input noise spectrum. We

can write the dynamic noise in the input current as

〈δIrec

aθ (t)δIrec

aθ (t′)〉 =
2
∑

b=1

J2

ab

∫ π/2

−π/2

dθ′

π
(1 + γ cos 2(θ − θ′))Cbθ′(t − t′), (28)

where we have used the continuum notation for the weighted averages. The correlation

function Cbθ′(t − t′) has a piece proportional to rb(θ)δ(t − t′), which gives

lim
ω→∞

〈|δIrec

aθ (ω)|2〉 =
2
∑

b=1

J2

ab

∫ π/2

−π/2

dθ′

π
(1 + γ cos 2(θ − θ′))rb(θ

′) (29)

=
2
∑

b=1

J2

ab[rb,2f0(θc) + γrb,2f2(θc) cos 2(θ − θ0)]. (30)

To obtain (30), we performed calculations analogous to the ones for solving the integrals

for the rate equations. Using (26) and (27), we can then write the flat contribution to

the noise spectrum as

lim
ω→∞

〈|δIrec

aθ (ω)|2〉 = −Îext

a [1 + ǫ cos 2(θ − θ0)]
2
∑

b=1

J2

ab

2
∑

c=1

(Ĵ−1)bcÎ
ext

c , (31)

This result states that the high-frequency limit of the neuronal input noise has the same

orientation tuning as the external input to the neuron.

For t 6= t′, it is not possible to calculate analytically solutions to (28) because the

correlation function Cbθ′(t− t′) needs to be evaluated numerically. Similarly, the tuning

of the irregularity in the neuronal firing (as described by, e.g., the Fano factor) can only

be determined by solving the full mean-field model numerically.

3. Numerical procedure

In our simulations, we modeled the orientation hypercolumn as an assembly of 30

orientation columns, with their preferred orientations θ equally spaced between −π/2

and π/2 (or between −90 and 90 degrees, as in the figure captions). We used parameter

values corresponding to N1 = 8000 excitatory and N2 = 2000 inhibitory neurons, and

a membrane time constant of τ = 10 ms for all neurons. The generic intra-cortical

connection strengths Jab in (2) were taken as
(

J11 J12

J21 J22

)

=

(

0.5 −2

1 −2

)

. (32)
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The synaptic strengths of the afferent inputs from the LGN are taken to be stronger

for the excitatory neurons; specifically, in (4), we chose Iext

2
= 2

3
Iext

1
. To study the role

of the overall strength of synapses, we multiply the generic synaptic weights (including

the strength of the external input) by a common scaling factor Js.

We use an iterative approach that was originally developed for spin glass models

[18] to find self-consistent solutions of the firing statistics given by the rates ra(θ), the

rate fluctuations (raθ
j )2, and the correlations Caθ(t−t′). We start with initial estimates of

these quantities, which we obtain by using a white-noise approximation in the analytical

treatment described above. We then generate many realizations of Gaussian synaptic

currents using (4) and (9), which we use to drive single integrate-and-fire neurons.

By collecting their firing statistics, we obtain improved estimates of the rates, rate

fluctuations, and correlations. These are then used to repeat the cycle until the input

and output statistics are consistent.

For the hypercolumn model, we need to determine these firing statistics for each

population a (excitatory and inhibitory) within each orientation column θ. However,

because of the inherent symmetry in the network topology, at each iteration step we

only need to run simulations for half of the columns and mirror the results to obtain

improved statistics for the entire network. To collect the firing statistics from the

column population aθ, we run many trials of single neurons that are sampled from the

entire column population. This is achieved by generating Gaussian input currents that

fluctuate not only in time (by generating realizations of the dynamic and appropriately

colored input noise ξbθ′(t) in (11)), but also differ in their overall size due to the random

numbers xbθ′ in (11), which reflects the fact that different neurons have in general

different connectivity patterns. (Note that we have used here – as throughout the text

– the indices aθ for referring to the “target column”, whereas bθ′ runs over all “source

columns”). For a more detailed account on handling some of the subtleties in obtaining

the correct statistics, see [9].

Once the procedure converges, which takes tens to hundreds of iterations, depending

on the set of parameters and the specific approach taken, one has obtained a set of self-

consistent firing statistics, describing the population responses for a specific network

input (stimulus contrast and stimulus orientation). Equipped with these population

statistics we can then calculate input and firing statistics for individual neurons. To

specify such a neuron, we select a set

{xbθ′ : b = 1, 2; θ′ = θ1, . . . , θn} (33)

and keep it fixed over all trials to collect the statistics for that neuron. The xbθ′ represent

the intrinsic variability across the population in the strength of synaptic input due to

the randomness in the connectivity of the network.

4. Results

We concentrate first on results describing response characteristics of neurons obtained

from their firing statistics. It is possible to compare these results directly with known
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Figure 2. Contrast-invariant tuning width. Average over 100 neurons (upper-left

panel) and three randomly chosen neurons. The parameter values for the stimulus

tuning and the connectivity tuning were ǫ = 0.5 and γ = 0.625, respectively, resulting

in a tuning width of 43.2 degrees according to the calculations. Contrast-invariant

tuning is observed for both averaged and single-neuron tuning, despite the small

distortions and asymmetries for single neurons. (See the text for further details)

properties like contrast-invariant tuning, or with the variability in spike counts. We

then describe results pertaining to properties of the neuronal input currents (and their

orientation tunings) for the hypercolumn model.

4.1. Tuning of the neuronal firing

For the present model, we have shown analytically above that the tuning width of the

column population rates is invariant with respect to the contrast of the stimulus (see

Equation (26)). We investigated whether such contrast-invariant tuning is also observed

for single, randomly chosen neurons. The number of afferent connections that a given

neuron receives from neurons with another preferred orientation is a random number

drawn from a probability distribution given by (1). This will in general distort the shape

of the neuron’s tuning curve. Figure 2 shows the tuning curves of three randomly chosen

neurons from the column with θ = 0 for three different contrasts Îext

a = 0.5, 1, and 2.

For our network with 30 orientation columns and 2 populations, the resulting realization

of the random connectivity to a single neuron is therefore determined by a set of 60

random numbers (see Equation (33)). To record the neuronal responses, these sets were

held fixed, while the network was presented successively with stimuli of all orientations

θ0. Also shown in Figure 2 is the result of averaging over the tuning curves of n = 100

randomly chosen neurons. While the averaged tuning is both smooth and symmetric, the
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Figure 3. Tuning of the gain function. Upper panel: Spike count as a function

of stimulus contrast, parameterized by the stimulus orientation. The input-output

relationship is linear, and the slope decreases as the stimulus orientations θ0 becomes

more dissimilar to the neuron’s preferred orientation θ = 0 (results shown for neuron

5 in Figure 2). Lower panel: Spike count ratios for two pairs of spike counts resulting

from doubling the contrast. At the preferred orientation (PO) and for orientations

not too far from the PO, doubling the contrast doubles the spike count. For more

dissimilar stimulus orientations, the ratios decrease systematically.

tuning curves of single neurons show small distortions and asymmetries. Additionally,

the overall strength of the response varies from neuron to neuron. However, despite the

somewhat irregular shapes, the contrast-invariance of the tuning width is preserved for

single, randomly chosen neurons. The analytical treatment predicts a threshold-cosine

shape of the tuning, while the curves shown here, including the averaged ones, show a

rounded fall-off to zero with non-zero rates for angles just outside the tuning width. This

“rounding artifact” appears to be due to a slow convergence of the numerical procedure

at extremely low firing rates; the artifact is reduced when the algorithm is run for more

iterations.

In all our simulations, we observe an almost linear input-output relationship

between stimulus contrast and firing rate, in agreement with experiments (see, e.g.,

Figure 1 in [12]). Figure 3 shows how the input-output relationship depends on the

stimulus orientation. In the upper panel of Figure 3, the spike count is plotted as a

function of the external input strength Îext

1
, i.e. the contrast of the stimulus, for a

single neuron (neuron 5 of Figure 2). The slope changes systematically with stimulus

orientation θ0, getting smaller as the difference between the stimulus orientation and

the neuron’s preferred orientation increases. The lower panel of Figure 3 shows the

spike count ratios of two pairs of spike counts that resulted from doubling the stimulus

contrast. In contrast to the upper panel of Figure 3, these curves show results of
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Figure 4. Tuning of the Fano factors. Tuning curves, parameterized by relative

synaptic strengths Js, are shown for the same three neurons as in Figure 2 and for an

average over 100 neurons (upper left panel). The Fano factors F depend systematically

on Js: stronger synapses lead to higher Fano factors. On average, F stays either above

1 for all orientations or below 1 for all orientations. For F ≈ 1, the tuning is almost

flat, while it reaches a maximum (resp. minimum) at the preferred orientation for

F > 1 (resp. F < 1).

averaging spike counts over 100 neurons, in order to make the general tendency clearer.

It can be seen that for the preferred orientation, doubling the stimulus almost perfectly

doubles the spike count (this is also true for single neurons, as can be read off from

Figure 2). This relationship also holds for stimulus orientations away from the PO,

until about 20 degrees difference, which is about half the tuning width of these neurons.

For larger orientation differences, the ratio decreases. It seems likely that at large

orientation differences (near the tuning width) this reduction is due to the rounding

artifact for very low spike rates discussed above. For intermediate orientation differences,

say 20–35 degrees, the reason for the reduction is not evident to us.

We characterize the irregularity in the neuronal firing by the Fano factor F . For

a Poisson process F = 1, while F 6= 1 implies temporal correlations in the spike times:

F > 1 indicates a tendency towards “bursty” spiking behavior, and F < 1 indicates

more regular spike trains with narrower interspike interval (ISI) distributions. Figure 4

shows the tuning of the Fano factor for three different overall connection strengths

Js = 0.4, 0.7, and 1.2. As in Figure 2, the results for (the same) three individual

neurons are shown, as well as an averaged tuning curve. It can be seen that the Fano

factor depends systematically on the overall strength of connectivity: stronger synapses

lead to more irregular spike counts. The averaged tuning curves reveal two further

properties, which we observed consistently in all our simulations, performed with many
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Figure 5. Analysis of Fano factor tuning: tuning of mean spike count and spike

count variance for relative synaptic strengths Js = 0.4, 0.5, . . . , 0.9. For each Js, the

variance stays either below the mean or above the mean for all orientations (upper and

lower panels, respectively), resulting in ratios F < 1 and F > 1 for all orientations.

The variance increases with Js – most sensitively at the preferred orientation (PO). For

F ≈ 1, the variance and mean tuning curves are almost identical, resulting in an almost

flat tuning of their ratio F , while for F 6= 1 the ratios reach a minimum/maximum at

the PO.

different sets of parameters: First, Fano factors are either less than 1 at all angles or

greater than 1 at all angles. Second, if they are considerably greater than 1, they peak

at the preferred orientation, falling off as the difference between stimulus orientation

and PO increases; in the case where F stays below 1, the opposite tuning is observed,

i.e., the Fano factor reaches a minimum at the preferred orientation. We can shed some

light on the emergence of these two properties by looking at pairs of tuning curves for

the spike count variance and the mean spike count and then systematically changing

the connection strengths. We show these tuning curves for 6 different values of Js in

Figure 5. It can be seen that both the mean and the variance peak at the PO, falling

off towards increasing angle differences. Furthermore, for F ≈ 1 at Js = 0.7, the tuning

curves are nearly identical resulting in almost untuned Fano factors close to 1. For lower

Js values, the variance curve stays entirely below the mean curve, while the opposite

is true for Js values bigger than 0.7. Therefore, the ratio of the curves, which is the

tuning curve of the Fano factor, stays either always below 1 or always above 1. The

size of the spike count variance depends sensitively on the overall connection strengths

Js. Apparently, this sensitivity is strongest at the PO, decreasing towards greater angle

differences. Therefore, the Fano factor reaches its minimum for the cases with F < 1
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Figure 6. Autocorrelation tuning. Upper panels: Weak synapses with Js = 0.5.

There is a dip to negative values for small time differences. It decreases in strength

at greater time differences. The dip indicates a relative refractoriness to emitting a

spike immediately after a previous one, resulting in Fano factors F < 1. Lower panels:

Strong synapses with Js = 1.3. There is a hill of positive correlations for short intervals,

falling off to zero for increasing time differences. The hill indicates a tendency toward

clustered spikes, resulting in F > 1. The autocorrelations for excitatory neurons

(left panels) and inhibitory neurons (right panels) show the same qualitative features,

differing only in overall size.

(respectively its maximum for F > 1) when the stimulus is at the preferred orientation.

As already mentioned, Fano factors that deviate from 1 indicate temporal

correlations in the spike trains. The nature of these correlations and their orientation

dependence is summarized in Figure 6 for a case with F < 1 (Js = 0.5; upper panels)

and a case with F > 1 (Js = 1.3; lower panels) for both excitatory neurons (left panels)

and inhibitory ones (right panels). For Js = 0.5, there is a negative dip for small

time differences, indicating a relative refractoriness to emitting a spike immediately

after a previous one. For stronger synapses (Js = 1.3) there is no such refractoriness.

On the contrary, for strong synapses, we observe positive correlations for small time

differences. For both strong and weak synapses, the correlations are strongest at the

preferred orientation and decrease monotonically for less optimal stimulus orientations.

The autocorrelations for excitatory and inhibitory neurons show the same qualitative

features, differing only in their overall size.

In Figure 7 we illustrate how the firing statistics depend on ǫ and γ, which

determine how strongly the input current and the intracortical connectivity are tuned

(see equations (4) and (1), respectively). Fano factor tuning curves (left panels) and

firing rate tuning curves (right panels) for three different combinations of ǫ and γ are
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Figure 7. Dependence of the Fano factors on tuning parameters ǫ and γ at three

different values of relative synaptic strengths Js. Fano factors and mean spike

counts are shown for three different combinations of ǫ (external input tuning) and

γ (connectivity tuning). The tuning of both the Fano factors and the mean counts are

controlled by the ratio ǫ/γ.

shown, parameterized by Js, the scaling factor for the synaptic strengths. As shown

analytically above, the ratio ǫ/γ determines the tuning width of the neuronal firing (see

Equation (26)). This is reflected by the identical firing tuning widths in the first and

second row of Figure 7, for both of which ǫ/γ = 0.8, resulting in a tuning width of

θc = 43.2 degrees. The third row of Figure 7 shows results for the same external input

tuning ǫ = 0.5 as in the first row, but for a different ratio ǫ/γ = 0.6. This results in

θc = 67.7 degrees and an accordingly broader tuning curve of the firing, plotted in the

right panel of the third row. The curves for the Fano factor tuning in the left panels of

Figure 7 suggest that the tuning of the firing irregularity is – just as the tuning of the

firing itself – only dependent on the ratio ǫ/γ. (We consistently found this dependence

in all our simulations.)

4.2. Tuning of the neuronal input current

Our analytical treatment of the balanced hypercolumn model reveals that the high-

frequency neuronal input noise power has the same tuning as the external input. In

Figure 8 we show simulation results of the noise tuning for the same three combinations

of ǫ and γ as in Figure 7. For the panels in the first and the second row of Figure 8,

ǫ/γ = 0.8, but ǫ = 0.5 and ǫ = 0.25 in the upper and middle rows, respectively.
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Figure 8. Dependence of the noise on tuning factors ǫ and γ. External input

and dynamic input noise versus tuning of the neuronal firing for the same three

combinations of ǫ and γ as in Figure 7. It can be seen that the tuning of the noise is

determined by ǫ, while the tuning of the firing rate is determined by the ratio ǫ/γ.

While the tuning of the neuronal firing is identical for these two cases, the noise tuning

is weaker in the middle row, reflecting the weaker tuning of the external input (left

panels). The results presented in the third row of Figure 8 show a case with a broader

tuning of the response, resulting from a different ratio between ǫ and γ, but with the

same ǫ = 0.5 as in the first row. For these two cases, the tunings on the input side –

concerning external input and dynamic noise – are practically indistinguishable, while

the tunings of the firing differ. Thus, the noise tuning is determined by ǫ, unlike the

response tuning, which depends on the ratio ǫ/γ.

The balanced state for the orientation hypercolumn implies that the mean input

currents (external and recurrent currents), which are each of O(
√

Ka) with Ka ≫ 1,

cancel up to corrections of O(1). It is not straightforward to calculate the tuning of the

resulting net mean current, since the balance condition (14) does not allow inferences

about its size. However, the solutions obtained by the numerical algorithm provide direct

access to the net mean currents, which we depict in Figure 9 for the same combinations

of ǫ and γ as for the noise tuning in Figure 8. It is clear from Figure 9 that the tuning of

the mean input, unlike the dynamic input noise tuning, is not determined by the tuning

of of the external input. Rather, it seems to be the ratio ǫ/γ that primarily determines

it, as suggested by the almost identical tunings for the two cases with identical ǫ/γ.

Since the tuning of the external input and that of the noise variance are the same, the

left panels of Figure 9 also show how the tuning of the noise compares to that of the
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Figure 9. Dependence of the mean input current on tuning factors ǫ and γ. External

input tuning and mean-input tuning versus tuning of the response for the same three

combinations of ǫ and γ as in Figure 7 and Figure 8. The tuning of the mean input is

not determined by ǫ; rather, as for the spike count tuning shown in the right panels,

the ratio ǫ/γ plays an important role.

mean input current for the three combinations of ǫ and γ.

5. Discussion

In this work, we presented a complete mean field theory for a balanced network with

structural inhomogeneity, together with an algorithm that allows one to find the self-

consistent solutions for the mean rates, their cell-to-cell fluctuations, and the correlation

functions. We applied the theory to a simple model of an orientation hypercolumn in

primary visual cortex, comprised of integrate-and-fire neurons. Despite the relative

simplicity of the model, the resulting dynamics capture several key properties known

about responses of orientation selective cortical neurons in vivo. Within this description,

we can pinpoint how the resulting neuronal dynamics are controlled by parameters of

the model, and quantify their influence.

Specifically, we find contrast-invariant tuning of the neuronal firing not only for the

population rates, as derived from the analytical treatment, but also for single, randomly

chosen neurons. Moreover, the firing rate increases linearly with the strength of the

input current (i.e., the contrast of the stimulus). Note that these are network effects

originating in the dynamical balance between excitation and inhibition, not properties

of isolated neurons. This is in agreement with experimental results, where such a linear
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input-output relationship can only be found for cortical neurons in vivo, but not for

single neurons in vitro.

Another network effect that emerges naturally from the self-consistent dynamic

balance, in combination with the static randomness in the connectivity, is the irregularity

in the neuronal firing. We are able to describe it quantitatively through the correlation

functions, which are determined self-consistently in the theory. Such firing-statistical

issues cannot be addressed in “rate models”, which simply assume a particular relation

between average input current or membrane potential and firing rate. While it is possible

to calculate the firing variability in the mean-field treatment of Brunel [6], it cannot be

done in a self-consistent manner because of the assumption that the neuronal input is

uncorrelated in time (white noise). Here we color the noise self-consistently. Poisson-

like statistics (Fano factor F = 1) are only one possibility within a continuum of firing

statistics that depend sensitively on the strengths of the synapses: stronger synapses

generally lead to higher Fano factors. The underlying mechanism can be summarized as

follows: Stronger synapses increase the probability of a spike shortly after reset, which

leads to a higher tendency of spikes occurring in “clusters”, thereby increasing the spike

count variance. A detailed account of this mechanism, involving the dependence of the

membrane potential distribution on the synaptic strength can be found in [9], where the

analysis was carried out for a single cortical column.

The mean field theory applied to the present model allows us to study tuning

properties of both the neuronal firing and the neuronal input and their dependence on

network parameters. Concerning the irregularity of firing, our results suggest that F

stays either above 1 or below 1 for all orientations. Moreover, the modulation strength

of F over angles increases, relative to the almost untuned case of F ≈ 1, with increasing

(resp. decreasing) overall values of F , reaching a maximum (resp. a minimum) at the

preferred orientation.

Concerning the tuning of the input currents, we find analytically that the high-

frequency input noise power has the same tuning as the external input to the neuron

(which in turn is determined by a Hubel-Wiesel feed-forward connectivity from the

LGN). In our numerical calculations we observe a close fit between the tuning of the

overall input noise and the one of the external input. This suggests that the tuning

of the external input may be a good predictor for the noise tuning, and vice versa. In

contrast, we find that the tuning of the mean input current does not reflect the one of

the external input, but is predominantly determined by the ratio ǫ/γ of the modulation

strengths of the external input and the cortical interactions.

Some of our results (the existence of a stable, asynchronous low-rate state,

contrast-invariant orientation tuning, and the inverse relation between the sharpness

of orientation tuning and intracortical tuning strength γ) were obtained previously by

Wolf et al. [19] in an extension of van Vreeswijk and Sompolinsky’s stochastic binary

model [2, 3] to a hypercolumn, but the treatment of a spiking neuron model and all the

results for correlations of both input and output are new here. Also new is that we go

beyond population statistics and make quantitative predictions about input and output
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characteristics of individual neurons, which can be tested directly.

Firing irregularity of neurons in primary visual cortex has been investigated

experimentally for a long time (see, e.g., [20, 21, 22, 23, 14]). Well studied is also

the dependence of firing rate on the stimulus orientation [10, 24], but we are not aware

of studies investigating the dependence of firing irregularity on the orientation. Our

predictions concerning the tuning of the input currents (for both mean and noise) can be

tested experimentally by systematically changing ǫ (the external input tuning strength)

via changing the spatial modulation of the stimulus and then observing how the the

mean and noise tunings are affected separately.

The mean field theory presented here, in combination with the numerical procedure

for finding the self-consistent solutions, can be applied to models that capture more

of the known neuronal and cortical physiology. For example, it is straightforward to

incorporate conductance-based synapses into the hypercolumn model, as has already

been done for a single-column model (see [25] and [15]). It is also straightforward to use

different, possibly more realistic neuron models – even several kinds of neuron models

within one given network model, since the neuronal dynamics are explicitly simulated

within the numerical procedure for collecting the firing statistics. Here, we have shown

how the theory can be applied to networks with non-homogenous architecture, using a

simple one-dimensional model for a cortical hypercolumn. This model can be thought of

as describing an annulus around a pinwheel center. Using the same general techniques as

introduced here, the model can be extended to incorporate a two-dimensional geometry

to describe an entire pinwheel. Similarly, as we have shown for orientation selectivity,

it is possible to include other coding features, such as spatial phase, for example. Thus,

the power of this mean-field approach lies in its generality, which makes it possible to

quantify dynamics of balanced, highly connected networks.
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