1,700 research outputs found

    Uptake mechanism, intracellular trafficking and endo-isosomal pH monitoring of polystyrene nanoparticles

    Get PDF

    Assessment of Myocardial Metabolism with 11C-palmitate. Comparison with 123I-heptadecanoic acid

    Get PDF
    Carbon-11 (11C)-palmitate is chemically identical to its physiological counterpart. After intravenous injection the myocardial distribution of 11C-activity can be measured accurately by positron emission tomography. Regions of decreased 11C-palmitate uptake can be readily identified and their size quantified. Results obtained in dogs with experimental coronary thrombosis and in patients with myocardial infarction indicate that positron emission tomography with 11C-palmitate allows non-invasive assessment of the metabolic recovery of the myocardium after lysis of the occluding coronary thrombus. There is experimental evidence that the rate of clearance of 11C-palmitate activity from the myocardium is related to oxidative fatty acid metabolism. In dogs, a restriction of the oxygen supply to the myocardium results in a decrease in the rate of 11C-clearance independently of whether myocardial perfusion is concomitantly reduced or not. Similarities in myocardial uptake and clearance exist between iodine-123 (123I)-heptadecanoic acid and 11C-palmitate. However, interpretation of the kinetics of the radio-iodinated fatty acid analogue has to take into account the different intracellular fate of the iodine label compared with the fatty acid structur

    Gravity model improvement using GEOS-3 (GEM 9 and 10)

    Get PDF
    The use of collocation permitted GEM 9 to be a larger field than previous derived satellite models, GEM 9 having harmonics complete to 20 x 20 with selected higher degree terms. The satellite data set has approximately 840,000 observations, of which 200,000 are laser ranges taken on 9 satellites equipped with retroreflectors. GEM 10 is complete to 22 x 22 with selected higher degree terms out to degree and order 30 amounting to a total of 592 coefficients. Comparisons with surface gravity and altimeter data indicate a substantial improvement in GEM 9 over previous satellite solutions; GEM 9 is in even closer agreement with surface data than the previously published GEM 6 solution which contained surface gravity. In particular the free air gravity anomalies calculated from GEM 9 and a surface gravity solution are in excellent agreement for the high degree terms

    A 40th deg and order gravitational field model for Mars

    Get PDF
    Understanding the origin and evolution of major photographic features on Mars, such as the hemispheric dichotomy and Tharsis rise, will require improved resolution of that planet's gravitational and topographic fields. The highest resolution gravity model for Mars published to date was derived from Doppler tracking data from the Mariner 9 and Viking 1 and 2 spacecraft, and is of 18th degree and order. That field has a maximum spatial resolution of approx. 600 km, which is comparable to that of the best topographic model. The resolution of previous gravity models was limited not by data density, but rather by the computational resources available at the time. Because this restriction is no longer a limitation, the Viking and Mariner data sets were reanalyzed and a gravitational field was derived complete to the 40th degree and order with a corresponding maximum spatial resolution of 300 km where the data permit

    Preface: Advances in post-processing and blending of deterministic and ensemble forecasts

    Get PDF
    The special issue on advances in post-processing and blending of deterministic and ensemble forecasts is the outcome of several successful successive sessions organized at the General Assembly of the European Geosciences Union. Statistical post-processing and blending of forecasts are currently topics of important attention and development in many countries to produce optimal forecasts. Ten contributions have been received, covering key aspects of current concerns on statistical post-processing, namely the restoration of inter-variable dependences, the impact of model changes on the statistical relationships and how to cope with it, the operational implementation at forecasting centers, the development of appropriate metrics for forecast verification, and finally two specific applications to snow forecasts and seasonal forecasts of the North Atlantic Oscillation

    An improved error assessment for the GEM-T1 gravitational model

    Get PDF
    Several tests were designed to determine the correct error variances for the GEM-T1 gravitational solution which was derived exclusively from satellite tracking data. The basic method employs both wholly independent and dependent subset data solutions and produces a full field coefficient by coefficient estimate of the model uncertainties. The GEM-T1 errors were further analyzed using a method based upon eigenvalue-eigenvector analysis which calibrates the entire covariance matrix. Dependent satellite and independent altimetric and surface gravity data sets, as well as independent satellite deep resonance information, confirm essentially the same error assessment

    Dynamic sea surface topography, gravity and improved orbit accuracies from the direct evaluation of SEASAT altimeter data

    Get PDF
    A method for the simultaneous solution of dynamic ocean topography, gravity and orbits using satellite altimeter data is described. A GEM-T1 based gravitational model called PGS-3337 that incorporates Seasat altimetry, surface gravimetry and satellite tracking data has been determined complete to degree and order 50. The altimeter data is utilized as a dynamic observation of the satellite's height above the sea surface with a degree 10 model of dynamic topography being recovered simultaneously with the orbit parameters, gravity and tidal terms in this model. PGS-3337 has a geoid uncertainty of 60 cm root-mean-square (RMS) globally, with the uncertainty over the altimeter tracked ocean being in the 25 cm range. Doppler determined orbits for Seasat, show large improvements, with the sub-30 cm radial accuracies being achieved. When altimeter data is used in orbit determination, radial orbital accuracies of 20 cm are achieved. The RMS of fit to the altimeter data directly gives 30 cm fits for Seasat when using PGS-3337 and its geoid and dynamic topography model. This performance level is two to three times better than that achieved with earlier Goddard earth models (GEM) using the dynamic topography from long-term oceanographic averages. The recovered dynamic topography reveals the global long wavelength circulation of the oceans with a resolution of 1500 km. The power in the dynamic topography recovery is now found to be closer to that of oceanographic studies than for previous satellite solutions. This is attributed primarily to the improved modeling of the geoid which has occurred. Study of the altimeter residuals reveals regions where tidal models are poor and sea state effects are major limitations
    • …
    corecore