107 research outputs found

    Evaluation of Acute and Subacute Toxicity of Fumaria officinalis Alkaloids in Mice

    Get PDF
    Background: Fumaria officinalis is largely used in traditional medicine due to its efficiency in the treatment and prevention of numerous diseases and its large spectrum of therapeutic effects. Its multiple beneficial properties are due to its richness in bioactive substances, particularly isoquinoline alkaloids. However, few studies have addressed the toxicity of this plant. Objectives: The present work aimed to study acute and subacute toxicity of alkaloids extracted from F. officinalis using Swiss albino mice as the in vivo model. Methods: Alkaloids from the aerial parts of F. officinalis were extracted and administered to male and female Swiss albino mice. The acute and subacute toxicities were studied by monitoring the weight and histopathological study of animal bodies and organs (e.g., liver, heart, spleen, and kidneys). Results: The results revealed that mice treated with increasing doses developed serious symptoms of toxicity (i.e., respiratory problems, tremors, coma, and paralysis leading the death) and lost weight. The LD50 was estimated at 1341.11 mg/kg permitting its classification as a low-toxic plant. The microscopic observations demonstrated disturbances in the kidney and liver, but not the heart and spleen. Conclusion: The alkaloids of the aerial parts of F. officinalis expressed severe toxicity in mice, particularly at high doses. Nevertheless, the neutral fraction of alkaloids is more indicated

    Down-regulation of four putative arabinoxylan feruloyl transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls

    Get PDF
    Industrial processes to produce ethanol from lignocellulosic materials are available, but improved efficiency is necessary to make them economically viable. One of the limitations for lignocellulosic conversion to ethanol is the inaccessibility of the cellulose and hemicelluloses within the tight cell wall matrix. Ferulates (FA) can cross-link different arabinoxylan molecules in the cell wall of grasses via diferulate and oligoferulate bridges. This complex cross-linking is thought to be a key factor in limiting the biodegradability of grass cell walls and, therefore, the reduction in FA is an attractive target to improve enzyme accessibility to cellulose and hemicelluloses. Unfortunately, our knowledge of the genes responsible for the incorporation of FA to the cell wall is limited. A bioinformatics prediction based on the gene similarities and higher transcript abundance in grasses relative to dicot species suggested that genes from the pfam family PF02458 may act as arabinoxylan feruloyl transferases. We show here that the FA content in the cell walls and the transcript levels of rice genes Os05g08640, Os06g39470, Os01g09010 and Os06g39390, are both higher in the stems than in the leaves. In addition, an RNA interference (RNAi) construct that simultaneously down-regulates transcript levels of these four genes is associated with a significant reduction in FA of the cell walls from the leaves of the transgenic plants relative to the control (19% reduction, P < 0.0001). Therefore, our experimental results in rice support the bioinformatics prediction that members of family PF02458 are involved in the incorporation of FA into the cell wall in grasses

    Feruloylation and structure of arabinoxylan in wheat endosperm cell walls from RNAi lines with suppression of genes responsible for backbone synthesis and decoration

    Get PDF
    Arabinoxylan (AX) is the major component of the cell walls of wheat grain (70% in starchy endosperm), is an important determinant of end‐use qualities affecting food processing, use for animal feed and distilling and is a major source of dietary fibre in the human diet. AX is a heterogeneous polysaccharide composed of fractions which can be sequentially extracted by water (WE‐AX), then xylanase action (XE‐AX) leaving an unextractable (XU‐AX) fraction. We determined arabinosylation and feruloylation of AX in these fractions in both wild‐type wheat and RNAi lines with decreased AX content (TaGT43_2 RNAi, TaGT47_2 RNAi) or decreased arabinose 3‐linked to mono‐substituted xylose (TaXAT1 RNAi). We show that these fractions are characterized by the degree of feruloylation of AX, <5, 5–7 and 13–19 mg bound ferulate (g−1 AX), and their content of diferulates (diFA), <0.3, 1–1.7 and 4–5 mg (g−1 AX), for the WE, XE and XU fractions, respectively, in all RNAi lines and their control lines. The amount of AX and its degree of arabinosylation and feruloylation were less affected by RNAi transgenes in the XE‐AX fraction than in the WE‐AX fraction and largely unaffected in the XU‐AX fraction. As the majority of diFA is associated with the XU‐AX fraction, there was only a small effect (TaGT43_2 RNAi, TaGT47_2 RNAi) or no effect (TaXAT1 RNAi) on total diFA content. Our results are compatible with a model where, to maintain cell wall function, diFA is maintained at stable levels when other AX properties are altered

    An Improved Synthesis of Chacotriose.

    No full text

    Vecteurs spécifiques d'organes cibles de type monosaccharidiques et oligosaccharidiques

    No full text
    AMIENS-BU Sciences (800212103) / SudocSudocFranceF

    Natural and Synthetic Derivatives of the Steroidal Glycoalkaloids of Solanum Genus and Biological Activity

    No full text
    International audienceSteroidal alkaloids are secondary metabolites mainly isolated from species of Solanaceae and Liliaceae families that occurs mostly as glycoalkaloids. α-chaconine, α-solanine, solamargine and solasonine are among the steroidal glycoalkaloids commonly isolated from Solanum species. A number of investigations have demonstrated that steroidal glycoalkaloids exhibit a variety of biological and pharmacological activities such as antitumor, teratogenic, antifungal, antiviral, among others. However, these are toxic to many organisms and are generally considered to be defensive allelochemicals. To date, over 200 alkaloids have been isolated from many Solanum species, all of these possess the C27 cholestane skeleton and have been divided into five structural types; solanidine, spirosolanes, solacongestidine, solanocapsine, and jurbidine. In this regard, the steroidal C27 solasodine type alkaloids are considered as significant target of synthetic derivatives and have been investigated for more than 10 years in order to obtain new physiologically active steroids. It is important to state that the wide range of biological activities and the low amount available from natural sources, make relevant to obtained these metabolites by synthetic pathway
    corecore