15 research outputs found

    Tissue Oxygen Saturation Predicts Response to Breast Cancer Neoadjuvant Chemotherapy within 10 Days of Treatment

    Get PDF
    Ideally, neoadjuvant chemotherapy (NAC) assessment should predict pathologic complete response (pCR), a surrogate clinical endpoint for 5-year survival, as early as possible during typical 3- to 6-month breast cancer treatments. We introduce and demonstrate an approach for predicting pCR within 10 days of initiating NAC. The method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and logistic regression modeling. Tumor and normal tissue physiological properties were measured longitudinally throughout the course of NAC in 33 patients enrolled in the American College of Radiology Imaging Network multicenter breast cancer DOSI trial (ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy tissue, produced models with robust predictions. Notably, logistic regression based on z-score normalization using only tissue oxygen saturation (StO2) measured within 10 days of the initial therapy dose was found to be a significant predictor of pCR (AUC  =  0.92; 95% CI: 0.82 to 1). This observation suggests that patients who show rapid convergence of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR. This early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic feedback for optimization of chemotherapy strategies in breast cancer

    Performance Assessment of Diffuse Optical Spectroscopic Imaging Instruments in a 2-Year Multicenter Breast Cancer Trial

    Get PDF
    We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received multiple DOSI scans prior to and during 3- to 6-month NAC. The impact of three sources of error on accuracy and precision, including different operators, instruments, and calibration standards, was evaluated using a broadband reflectance standard and two different solid tissue-simulating optical phantoms. Instruments showed \u3c 0.0010 mm−1 (10.3%) and 0.06 mm−1 (4.7%) deviation in broadband absorption and reduced scattering, respectively, over the 2-year duration of ACRIN-6691. These variations establish a useful performance criterion for assessing instrument stability. The proposed procedures and tests are not limited to DOSI; rather, they are intended to provide methods to characterize performance of any instrument used in translational optical imaging

    The NEWGEN European Union Research Project for a New Generation of HVDC Cable Systems

    Get PDF
    This paper illustrates the European Union NEWGEN research project, entitled 'New Generation of HVDC Insulation Materials, Cables and Systems', with 10 partners over 5 EU Countries. The objective of NEWGEN is to develop and proof new insulation materials, manufacturing solutions, online condition monitoring, and comprehensive life and reliability modelling tools for next-generation of extruded HVDC cables and cable systems, thus fostering the reliability and resilience of the European HVAC/-DC transmission grid.</p

    Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy.

    No full text
    Tissue hemoglobin oxygen saturation (i.e., oxygenation) is a functional imaging endpoint that can reveal variations in tissue hypoxia, which may be predictive of pathologic response in subjects undergoing neoadjuvant chemotherapy. In this study, we used diffuse optical spectroscopic imaging (DOSI) to measure concentrations of oxyhemoglobin (ctO(2)Hb), deoxy-hemoglobin (ctHHb), total Hb (ctTHb = ctO(2)Hb + ctHHb), and oxygen saturation (stO(2) = ctO(2)Hb/ctTHb) in tumor and contralateral normal tissue from 41 patients with locally advanced primary breast cancer. Measurements were acquired before the start of neoadjuvant chemotherapy. Optically derived parameters were analyzed separately and in combination with clinical biomarkers to evaluate correlations with pathologic response. Discriminant analysis was conducted to determine the ability of optical and clinical biomarkers to classify subjects into response groups. Twelve (28.6%) of 42 tumors achieved pathologic complete response (pCR) and 30 (71.4%) were non-pCR. Tumor measurements in pCR subjects had higher stO(2) levels (median 77.8%) than those in non-pCR individuals (median 72.3%, P = 0.01). There were no significant differences in baseline ctO(2)Hb, ctHHb, and ctTHb between response groups. An optimal tumor oxygenation threshold of stO(2) = 76.7% was determined for pCR versus non-pCR (sensitivity = 75.0%, specificity = 73.3%). Multivariate discriminant analysis combining estrogen receptor staining and stO(2) further improved the classification of pCR versus non-pCR (sensitivity = 100%, specificity = 85.7%). These results show that elevated baseline tumor stO(2) are correlated with a pCR. Noninvasive DOSI scans combined with histopathology subtyping may aid in stratification of individual patients with breast cancer before neoadjuvant chemotherapy
    corecore