583 research outputs found

    Earth-like sand fluxes on Mars

    Get PDF
    Strong and sustained winds on Mars have been considered rare, on the basis of surface meteorology measurements and global circulation models, raising the question of whether the abundant dunes and evidence for wind erosion seen on the planet are a current process. Recent studies showed sand activity, but could not determine whether entire dunes were moving—implying large sand fluxes—or whether more localized and surficial changes had occurred. Here we present measurements of the migration rate of sand ripples and dune lee fronts at the Nili Patera dune field. We show that the dunes are near steady state, with their entire volumes composed of mobile sand. The dunes have unexpectedly high sand fluxes, similar, for example, to those in Victoria Valley, Antarctica, implying that rates of landscape modification on Mars and Earth are similar

    Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity

    Get PDF
    Developing seeds accumulate late embryogenesis abundant (LEA) proteins, a family of intrinsically disordered and hydrophilic proteins that confer cellular protection upon stress. Many different LEA proteins exist in seeds, but their relative contribution to seed desiccation tolerance or longevity (duration of survival) is not yet investigated. To address this, a reference map of LEA proteins was established by proteomics on a hydrophilic protein fraction from mature Medicago truncatula seeds and identified 35 polypeptides encoded by 16 LEA genes. Spatial and temporal expression profiles of the LEA polypeptides were obtained during the long maturation phase during which desiccation tolerance and longevity are sequentially acquired until pod abscission and final maturation drying occurs. Five LEA polypeptides, representing 6% of the total LEA intensity, accumulated upon acquisition of desiccation tolerance. The gradual 30-fold increase in longevity correlated with the accumulation of four LEA polypeptides, representing 35% of LEA in mature seeds, and with two chaperone-related polypeptides. The majority of LEA polypeptides increased around pod abscission during final maturation drying. The differential accumulation profiles of the LEA polypeptides suggest different roles in seed physiology, with a small subset of LEA and other proteins with chaperone-like functions correlating with desiccation tolerance and longevity

    Isolation and characterization of cytotoxic and insulin-releasing components from the venom of the black-necked spitting cobra Naja nigricollis (Elapidae)

    Get PDF
    Four peptides with cytotoxic activity against BRIN-BD11 rat clonal β-cells were purified from the venom of the black-necked spitting cobra Naja nigricollis using reversed-phase HPLC. The peptides were identified as members of the three-finger superfamily of snake toxins by ESI-MS/MS sequencing of tryptic peptides. The most potent peptide (cytotoxin-1N) showed strong cytotoxic activity against three human tumour-derived cell lines (LC50 = 0.8 ± 0. 2 µM for A549 non-small cell lung adenocarcinoma cells; LC50 = 7 ± 1 µM for MDA-MB-231 breast adenocarcinoma cells; and LC50 = 9 ± 1 µM for HT-29 colorectal adenocarcinoma cells). However, all the peptides were to varying degrees cytotoxic against HUVEC human umbilical vein endothelial cells (LC50 in the range 2-22 µM) and cytotoxin-2N was moderately hemolytic (LC50 = 45 ± 3 µM against mouse erythrocytes). The lack of differential activity against cells derived from non-neoplastic tissue limits their potential for development into anti-cancer agents. In addition, two proteins in the venom, identified as isoforms of phospholipase A2, effectively stimulated insulin release from BRIN-BD11 cells (an approximately 6-fold increase in rate compared with 5.6 mM glucose alone) at a concentration (1 µM) that was not cytotoxic to the cells suggesting possible application in therapy for Type 2 diabetes

    Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico

    Get PDF
    The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the M_w 7.2 2010 El Mayor–Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130° E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15 s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone

    An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison

    Get PDF
    Desiccation tolerance (DT) is the capacity to withstand total loss of cellular water. It is acquired during seed filling and lost just after germination. However, in many species, a germinated seed can regain DT under adverse conditions such as osmotic stress. The genes, proteins and metabolites that are required to establish this DT is referred to as the desiccome. It includes both a range of protective mechanisms and underlying regulatory pathways that remain poorly understood. As a first step toward the identification of the seed desiccome of Medicago truncatula, using updated microarrays we characterized the overlapping transcriptomes associated with acquisition of DT in developing seeds and the re-establishment of DT in germinated seeds using a polyethylene glycol treatment (−1.7 MPa). The resulting list contained 740 and 2829 transcripts whose levels, respectively, increased and decreased with DT. Fourty-eight transcription factors (TF) were identified including MtABI3, MtABI5 and many genes regulating flowering transition and cell identity. A promoter enrichment analysis revealed a strong over-representation of ABRE elements together with light-responsive cis-acting elements. In Mtabi5 Tnt1 insertion mutants, DT could no longer be re-established by an osmotic stress. Transcriptome analysis on Mtabi5 radicles during osmotic stress revealed that 13 and 15% of the up-regulated and down-regulated genes, respectively, are mis-regulated in the mutants and might be putative downstream targets of MtABI5 implicated in the re-establishment of DT. Likewise, transcriptome comparisons of the desiccation sensitive Mtabi3 mutants and hairy roots ectopically expressing MtABI3 revealed that 35 and 23% of the up-regulated and down-regulated genes are acting downstream of MtABI3. Our data suggest that ABI3 and ABI5 have complementary roles in DT. Whether DT evolved by co-opting existing pathways regulating flowering and cellular phase transition and cell identity is discussed

    Resolving Fine-Scale Heterogeneity of Co-seismic Slip and the Relation to Fault Structure

    Get PDF
    Fault slip distributions provide important insight into the earthquake process. We analyze high-resolution along-strike co-seismic slip profiles of the 1992 M_w = 7.3 Landers and 1999 M_w = 7.1 Hector Mine earthquakes, finding a spatial correlation between fluctuations of the slip distribution and geometrical fault structure. Using a spectral analysis, we demonstrate that the observed variation of co-seismic slip is neither random nor artificial, but self-affine fractal and rougher for Landers. We show that the wavelength and amplitude of slip variability correlates to the spatial distribution of fault geometrical complexity, explaining why Hector Mine has a smoother slip distribution as it occurred on a geometrically simpler fault system. We propose as a physical explanation that fault complexity induces a heterogeneous stress state that in turn controls co-seismic slip. Our observations detail the fundamental relationship between fault structure and earthquake rupture behavior, allowing for modeling of realistic slip profiles for use in seismic hazard assessment and paleoseismology studies

    Rôle des oligosaccharides de la famille du raffinose (RFO) dans la vigueur des semences de Medicago truncatula

    Get PDF
    Rôle des oligosaccharides de la famille du raffinose (RFO) dans la vigueur des semences de Medicago truncatula
    corecore