380 research outputs found

    Edge insulating topological phases in a two-dimensional long-range superconductor

    Full text link
    We study the zero-temperature phase diagram of a two dimensional square lattice loaded by spinless fermions, with nearest neighbor hopping and algebraically decaying pairing. We find that for sufficiently long-range pairing, new phases, not continuously connected with any short-range phase, occur, signaled by the violation of the area law for the Von Neumann entropy, by semi-integer Chern numbers, and by edge modes with nonzero mass. The latter feature results in the absence of single-fermion edge conductivity, present instead in the short- range limit. The definition of a topology in the bulk and the presence of a bulk-boundary correspondence is still suggested for the long-range phases. Recent experimental proposals and advances open the stimulating possibility to probe the described long-range effects in next-future realistic set-ups

    Two-kink bound states in the magnetically perturbed Potts field theory at T<Tc

    Full text link
    The q-state Potts field theory with 2≤q≤42\le q\le 4 in the low-temperature phase is considered in presence of a weak magnetic field h. In absence of the magnetic field, the theory is integrable, but not free at q>2: its elementary excitations - the kinks - interact at small distances, and their interaction can be characterized by the factorizable scattering matrix which was found by Chim and Zamolodchikov. The magnetic field induces the long-range attraction between kinks causing their confinement into the bound-states. We calculate the masses of the two-kink bound states in the leading order in |h| -> 0 expressing them in terms of the scattering matrix of kinks at h=0.Comment: 20 pages, no figures, v2: one section and references adde

    Monopoles, abelian projection, and gauge invariance

    Full text link
    A direct connection is proved between the Non-Abelian Bianchi Identities(NABI), and the abelian Bianchi identities for the 't Hooft tensor. As a consequence the existence of a non-zero magnetic current is related to the violation of the NABI's and is a gauge-invariant property. The construction allows to show that not all abelian projections can be used to expose monopoles in lattice configurations: each field configuration with non-zero magnetic charge identifies its natural projection, up to gauge transformations which tend to unity at large distances. It is shown that the so-called maximal-abelian gauge is a legitimate choice. It is also proved, starting from the NABI, that monopole condensation is a physical gauge invariant phenomenon, independent of the choice of the abelian projection.Comment: 9 pages, no figur

    The dynamics of university units as a multi-level process. Credibility cycles and resource dependencies

    Get PDF
    This paper presents an analysis of resource acquisition and profile development of institutional units within universities. We conceptualize resource acquisition as a two level nested process, where units compete for external resources based on their credibility, but at the same time are granted faculty positions from the larger units (department) to which they belong. Our model implies that the growth of university units is constrained by the decisions of their parent department on the allocation of professorial positions, which represent the critical resource for most units’ activities. In our field of study this allocation is largely based on educational activities, and therefore, units with high scientific credibility are not necessarily able to grow, despite an increasing reliance on external funds. Our paper therefore sheds light on the implications that the dual funding system of European universities has for the development of units, while taking into account the interaction between institutional funding and third-party funding

    Synthesis of Majorana mass terms in low-energy quantum systems

    Get PDF
    We discuss the problem of how Majorana mass terms can be generated in low-energy systems. We show that, while these terms imply the Majorana condition, the opposite is not always true when more than one flavour is involved. This is an important aspect for the low-energy realizations of the Majorana mass terms exploiting superfluid pairings, because in this case the Majorana condition is not implemented in the spinor space, but in an internal (flavour) space. Moreover, these mass terms generally involve opposite effective chiralities, similarly to a Dirac mass term. The net effect of these features is that the Majorana condition does not imply a Majorana mass term. Accordingly the obtained Majorana spinors, as well as the resulting symmetry breaking pattern and low-energy spectrum, are qualitatively different from the ones known in particle physics. This result has important phenomenological consequences, e.g. implies that these mass terms are unsuitable to induce an effective see-saw mechanism, proposed to give mass to neutrinos. Finally, we introduce and discuss schemes based on space-dependent pairings with nonzero total momentum to illustrate how genuine Majorana mass terms may emerge in low-energy quantum systems

    TUBERCOLOSI COME CAUSA DI FUO

    Get PDF

    On the weak confinement of kinks in the one-dimensional quantum ferromagnet CoNb2O6

    Full text link
    In a recent paper Coldea et al (2010 Science {\bf 327} 177) report observation of the weak confinement of kinks in the Ising spin chain ferromagnet CoNb2O6 at low temperatures. To interpret the entire spectra of magnetic excitations measured via neutron scattering, they introduce a phenomenological model, which takes into account only the two-kink configurations of the spin chain. We present the exact solution of this model. The explicit expressions for the two-kink bound-state energy spectra and for the relative intensities of neutron scattering on these magnetic modes are obtained in terms of the Bessel function.Comment: 18 pages, 9 figures; v2: figures 1,3,4 replaced, few misprints correcte

    An Optical-Lattice-Based Quantum Simulator For Relativistic Field Theories and Topological Insulators

    Get PDF
    We present a proposal for a versatile cold-atom-based quantum simulator of relativistic fermionic theories and topological insulators in arbitrary dimensions. The setup consists of a spin-independent optical lattice that traps a collection of hyperfine states of the same alkaline atom, to which the different degrees of freedom of the field theory to be simulated are then mapped. We show that the combination of bi-chromatic optical lattices with Raman transitions can allow the engineering of a spin-dependent tunneling of the atoms between neighboring lattice sites. These assisted-hopping processes can be employed for the quantum simulation of various interesting models, ranging from non-interacting relativistic fermionic theories to topological insulators. We present a toolbox for the realization of different types of relativistic lattice fermions, which can then be exploited to synthesize the majority of phases in the periodic table of topological insulators.Comment: 24 pages, 6 figure
    • …
    corecore