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Abstract
Wediscuss the problemof howMajoranamass terms can be generated in low-energy systems.We
show that, while these terms imply theMajorana condition, the opposite is not always truewhenmore
than one flavour is involved. This is an important aspect for the low-energy realizations of the
Majoranamass terms exploiting superfluid pairings, because in this case theMajorana condition is
not implemented in the spinor space, but in an internal (flavour) space.Moreover, thesemass terms
generally involve opposite effective chiralities, similarly to aDiracmass term. The net effect of these
features is that theMajorana condition does not imply aMajoranamass term. Accordingly the
obtainedMajorana spinors, as well as the resulting symmetry breaking pattern and low-energy
spectrum, are qualitatively different from the ones known in particle physics. This result has important
phenomenological consequences, e.g. implies that thesemass terms are unsuitable to induce an
effective see-sawmechanism, proposed to givemass to neutrinos. Finally, we introduce and discuss
schemes based on space-dependent pairings with nonzero totalmomentum to illustrate how genuine
Majoranamass termsmay emerge in low-energy quantum systems.

1. Introduction

Due to their crucial role in physics beyond the standardmodel (SM), a huge amount of research and interest is
devoted to the study and to the detection ofMajorana fermions at CERNand in underground experiments.
Majorana fermions werefirst introduced in 1937 by E.Majorana as real solutions of theDirac equation [1]. The
originalmotivation ofMajoranawas to prevent the existence of negative-energy solutions. The resulting
fermionic particles coincide with their own antiparticles, then they are invariant under charge conjugation [2, 3]
and neutral with respect to any additive charge [4]. The neutrality is encoded in the so-calledMajorana
condition, reading for a single-flavour relativistic fermion

*y y= ( )C 1

(apart from a global phase), whereψ is the real-space spinor and the charge conjugation operatorC acts on the
(suppressed) spinor indices.

Closely related to theMajorana condition is the concept ofMajoranamass. If the (3+1)-dimensional Dirac
equation has nomass term (Weyl equation), then the two (left and right) chiralities decouple. There are only two
mass terms compatible with Lorentz invariance: theDirac and theMajorana ones. Both terms couple spinors
with opposite chiralities. However, theDiracmass term couples independent spinors, while theMajorana one
couples chiralities related by charge conjugation. AMajoranamass implies the fulfillment of(1) [2, 3].

Equation (1)withC=1 is also fulfilled by zero-energy excitations [5–7] (also dubbedMajoranamodes)
occurring at the edges of nontrivial topological insulators [8]. However, these excitations differ fromMajorana
spinors because they lack of the internal spinor structure and do not obey fermionic statistics, but anyonic [9].
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Majoranamodes, as well as the simulation of theMajorana equation [10], are not subject of investigation in this
manuscript.

Majoranamasses provide a naturalmechanism to givemass to the neutrino (required to explain oscillations
[11], see [12] for an ultracold atom simulation), possibly without introducing sterile right-handed chiralities for
it [11, 13].Within the known SMparticles, neutrinos are the unique possibleMajorana spinors; remarkably only
theMajoranamass for the right-handed neutrinos is compatible with the symmetries of the SM [14, 15]. In the
supersymmetric extensions of the SM [16], a pletora ofMajorana elementary particles is required, e.g. as
partners of bosonic gaugefields. TheseMajorana particles are candidates to solve the long-standing problemof
the darkmatter component of theUniverse [17–19]. In spite of these theoreticalmotivations, whether
elementaryMajorana particles exist inNature is still an open question. No evidence has been found so far in
running experiments, as in the neutrinoless double beta decay [20] and at LHC. The theoretical implications of
theMajoranamasses and spinors, as well as the perspective of observing elementaryMajorana particles in
extremely sensitive experiments,make desirable to obtain them in low-energy quantum systems. For this
purpose, it is crucial to identify analogies and differences in these two frameworks.

Aswe clearly show, there are important differences betweenMajorana fields emerging inmost of superfluid
states ofmetals and semimetals and theMajorana spinors defined in particle physics/high-energy systems. For
instance, in the proposals considered in [7], the fermionic pairing does not induce ‘genuine’—in the sense of
particle physics—Majoranamasses since theMajorana condition is not implemented in the spinor space, as in
(1), but in the flavour space.

Themain goal of the present paper is to identify and discuss themechanisms for the emergence of genuine
Majoranamasses in low-energymodels. Our key point originates from the observation that theMajorana
condition does not imply the presence ofmass terms formulti-flavour systems. To illustrate anyway the
possibility of having theMajorana condition realized in the spinor spacewe discuss schemes obtained exploiting
unconventional superfluid pairings with nonzero totalmomentum.Wefinally present aMajoranamass
inducing aMajorana conditionwhereC acts on both spinor andflavour indices.

2.General aspects ofmass terms for spinors

Wefirst consider the general structure of themass terms for relativistic fermions (spinors), with particular
emphasis on the associated symmetry breaking patterns. For simplicity, we neglect any interactionmediated by
gauge bosons [21].

For the sake of generality, we consider a fermionic systemofN different flavors in (3+1) dimensions,
described by the Lagrangian   = +K mass, with  y g y= å ¶a a

m
m a¯iK , withα=1,K,N theflavor index.

The Lagrangian K in the basis ofWeyl (massless) spinors with definite chiralities L ,R, y y y=a a a( ),t
L

t
R

t , [21] is
manifestly invariant under the product of unitary transformations = ´( ) ( )G U N U NL R [14, 21].

Anymass term cannot entirely preserveG; themost general Lorentz invariant one [2, 3, 11] can bewritten as
   = å + +a a a a( )mass Lm, Rm, Dm, , with  y g y= +a a a

†C P h.c.m t
LLm, 2 0

L ,  y g y= +a a a
†C Pm t

RRm, 2 0
R

h.c.,  y y= - +a a a¯m h.c.DDm, , where g= ( )P 1 2L R 5 . For simplicity we have assumed that all the flavors
have equalmasses. ThematrixC=i γ2, in theWeyl basis reduces to s s= ÄC i i2 2, thus, in terms ofWeyl
spinors, we obtain

* y s y y s y= - +a a a a a ( )†m
i

m
i

2 2
, 2L

L
t

L
L

L LLm, 2 2

* y s y y s y= -a a a a a ( )†m
i

m
i

2 2
, 3R

R
t

R
R

R RRm, 2 2

 y y y y= - -a a a a a ( )† †m m . 4D L R D R LDm,

TheDiracmass in (4)mixes the chiralities, locking left- and right-handed chiral rotations. The resulting
breaking pattern is  ´( ) ( )G SU N U 1V , where ( )SU N V andU(1) involve the same (simultaneous)
transformations on the L andR spinors (see for example [21, 22]).

The terms in (2)–(3) break the number symmetryU(1) but do notmix the L andR chiralities (indeed, starting
froma chirality, the opposite one is obtained by charge conjugation), leading to  ´( ) ( )G O N O NL R, where

Ì( ) ( )O N U NL R L R are orthogonal groups.

The dispersion laws corresponding to (2)–(4) are = + ∣ ∣pE m2 2 , with

= +  - + ∣ ( ) ∣ ( )m m m m m m
1

2
4 . 5L R L R D

2 2

Thismass splitting is of the utmost phenomenological importance, because it allows for the generation of a
massive left neutrino through the see-sawmechanism, see for example [11, 15]. As an aside, we note that (2)–(4)
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do not allow any phase redefinition ofmR,mL, andmD. Therefore, if one of thesemasses acquires a complex
phase, the product CP of charge and parity conjugation symmetries is broken, see for example [11, 19]. Instead,
ifmD=0, the relative sign betweenmL andmR, that can be difficult to set in low-energy simulations, is re-
absorbable, then unphysical.

2.1.Majorana condition versusMajoranamass terms
Importantly, aWeyl spinor (saywith chirality L andflavourα), acquiring aMajoranamass, gives rise to the
Majorana spinor, *y y s y= -a a a( )i,M

t
L L2 , fulfilling(1). However, the fulfillment of aMajorana condition does

not necessarily imply the presence of aMajoranamass if ¹N 1. Indeed, in this case the same condition can be

realized on theflavour indices: *y y=a aa a¢ ¢˜ ˜ ˜C . The symbols ya˜ denote fermionic fields, even not relativistic,
where chiralities can be unspecified (or even not defined) in general; moreover ¹C̃ C typically. ThisMajorana
condition can be relatedwithmass terms reading as

*y y +a aa a¢ ¢˜ ˜ ˜ ( )†
C h.c., 6

explicitly breaking the Lorentz invariance andmixing in general all the chiralities (if defined). This situation is
largely encountered in low-energy physics and represents an important obstruction against the realization of
genuineMajoranamasses; explicit examples will be given in the following. Finally, situationswhere the Lorentz
invariance is broken by definiteflavour structures exist also in the context of neutrino physics [23, 24].

3.Weyl spinors on lattice systems

Weyl spinors, the starting building blocks for themass terms, can emerge as low-energy excitations in condensed
matter three-dimensional (3D) systems [25–31], calledWeyl semimetals. Notably, they host two inequivalent
and isolated points (Weyl nodes) in the Brillouin zonewhere two bands touch each others. These points are
separated inmomentum space, breaking the spatial inversion or time reversal canonical symmetries [32, 33].
Close to theWeyl nodes, the fermionic quasiparticles have a linear dispersion law and their dynamics can be
effectively described by twoWeylHamiltonianswith definite chiralities.What differentiates the variousmodels
is the shape of the Brillouin zone and themomentum separation between theWeyl nodes. Instead, their
appearance in pairs has a topological origin [34, 35].

Some 2Dbipartite latticemodels (dubbed naiveDirac semimetals), not breaking chiral symmetry [34, 35]
and still hosting isolated band-touching points, can be also thought as 3DWeyl semimetals. In this set are the
honeycomb lattice [36, 37] (characterizing graphene [38]), the brick-wall lattice (recently realized
experimentally [39]), and the square lattice pierced by amagneticπ-flux per plaquette [40]. Indeed, these 2D
models (connected by an interpolating pattern [41]) are also relatedwith genuineWeyl semimetals by a
projection along one axis. Reversely, by stacking the formermodels and adding suitable tunnelings along the
stacking direction, one can obtain the latter ones [42–45] (in this way, anisotropic and non-linear dispersions
can be also obtained [46–48]).

Alsomotivated by the previous discussion, for our purposes we focus primarily on the honeycomb lattice
described by a tight-bindingHamiltonianhon with spectrum  ( )k [36–38]. Expandinghon around theWeyl
nodes at kR and kL, up to a unitary transformation, we obtain theWeylHamiltonian [36, 37, 40]

 òå sy y= -
a

a a( ) ( ( ) · ( ) ( )) ( )†p p p p pt L2 d , 7R RLE

where = -p k kR L, , with ∣ ∣ ∣ ∣p kR L the residualmomentum, t≡ 1/2 is the tunneling amplitude,
 + »( ) ∣ ∣k p pR L, , and y = + +a a a( ) ( ( ) ( ))p k p k pc c,R L A R L B R L, , , with cA,α (cB,α) annihilation operators
acting on theA (B) sublattice.

TheHamiltonian (7) describes the low-energy physics also for all the other semimetalsmentioned above. In
the following, it will be chosen as the starting point for the implementation of the differentmass terms in (2)–(4).

4.Majorana-likemasses

Mass terms as in (6) are obtained by appropriate attractive interactions between fermions in ametal or a (Weyl)
semimetal, turning it into a superfluid, see for example [5–7]. This general fact can be understood considering, as
a leading example, an on-site interaction- å    

† †U c c c ci i i i i, , , , , >U 0, between twoflavours  { }, , and
defining the two-spinor F =  ( ) ( ( ) ( ))k k kc c, . The resultingmeanfield BCS term is

* s= D F F - +  - +( ) ( ( ) ( ) ( )) ( )†k k k k ki h.c., 8BCS 2

3
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formally similar to (2)–(3). The emergence of afield fulfilling aMajorana condition can bemade explicit defining
thefield *sY = F - F -( ) ( ( ) ( ))k k k, i T

2 and expressing ( )kBCS in terms of it. The appearance of Y( )k is deeply
relatedwith the presence of both positive- and negative-energy solutions of the Bogoliubov-deGennes equations
[49] connected byC=σ2⊗σ2 , since for the totalHamiltonian( )k it holds * = - --( ) ( )k kC C1 , see
for example [32] and references therein. This is a general feature of superconducting systems, even if the formof
Y( )k can vary, depending for instance on the number offlavours or lattice indices.

Assuming now towork on aWeyl semimetal (the discussion above still applies, since we can neglect the
sublattices indices), we examine inmore detail the chiral structure of the superfluid term (8). To this end, we
expand it close to theWeyl points, obtaining a pairingHamiltonian

* ò s= -D F F - + +D ( ( ) ( ) ) ( )†p p p R Ld i h.c. , 9R L2

clearly showing that thismass termdoes not induce the breaking pattern of aMajoranamass, because it couples
quasiparticles with opposite chiralities (momenta), as aDiracmass. Therefore, despite being aMajorana-like
mass, this is not a genuineMajoranamass. For the corresponding low-energy spectrum, in the simultaneous
presence of aDiracmass, we obtain (at vanishing chemical potential)

l = + + D( ) ∣ ∣ ( )p p m , 10DMD
2 2 2

which does not coincide with the one in (5).
Another central difference is that thematrix si 2 in (8)–(9) acts on theflavour space, as in (6), andnot on the

spinor (sublattice) indices as in (2)–(3). Notice that the same crucial difference allows to define aMajoranafield also
in superfluidphases of ordinarymetals,where the Fermi surface is extended andno effective chiral spinors occurs.

5.GenuineMajoranamasses

From the previous discussion, it emerges that engineering a genuineMajoranamass (and the corresponding
symmetry breaking pattern) by suitably coupling the nodal points of aWeyl semimetal, necessarily requires the
implementation of the charge conjugation operation, as in (1), in the spinor (sublattice) indices.Moreover, it
requires a superfluid pairing in single chiral valleys, kL or kR, thenwith nonzero totalmomentum.

We conclude that the request to implement genuineMajoranamass is to have intra-valley couplings, still
enforcing theMajorana condition on the sublattice indices. Candidates to realize such pairings are naturally
Weyl semimetals, as the ones obtained fromboth spinless or spinful non-relativistic fermions in honeycomb
lattices, loaded up to near half filling, with suitably engineered two-body interactions. Indeed, inWeyl
semimetals, specific interactions can induce spatially dependent pairings with nonzero total quasimomentum,
that are analogous to the FFLOpairing in the continuous space [50–52], but are expected to bemore robust
against disorder than standard FFLO (see for example [53, 54]).

Let us start from the spinless case, where one has only one species of non-relativistic fermions on the lattice,
giving rise to a single pair ofWeyl spinors (N= 1). In this case, the desired intra-valley superfluid pairing could
be energetically favored by large nearest-neighbor (inter-sublattices) attractions, and possibly stabilized by a
further (subleading)next-nearest-neighbor attraction [55] (otherwise phase separationmay prevent
superfluidity [56, 57]). In ultracold atom experiments, the required nearest-neighbor interaction between
fermions can be synthesized for instance as an effective interactionmediated by (s-wave) collisionswith bosons
(see for example [58–60]). Another possibility would be to exploit dipolar interactions in fermionicmagnetic
atoms like Erbium,where stable dipolar Feshbach resonances between different spin states have been
experimentally demonstrated very recently in [61].

Assuming Îi A and Îj B nearest-neighbour, similarly as in [62], the direction-dependent spin-triplet
superfluid term can bewritten as

á ñ = á - ñ = D = D  D+ +( ) ( ) ( )·( ) ·( )k kc c c c c c e e , 11k i j k i j
iA jB iA jB jB iA i j R L,

i iR L

wherewe neglected a p dependence of the pairings, being p2 the relativemomentumbetween the fermions in
the pair. Due to the Fermi statistics, which constrainsT+J+L to be odd [63] (T, J, and L being the lattice,
flavour, and angular quantumnumbers, respectively), one finds that pairing functions in the two valleys are even
in p:D = D -( ) ( )k p k p,R L R L . Notably, for each chiral valley, only one planewave appears: this is a necessary
condition to have a spatially inhomogeneous pairingwith afinite gap, see [52] for an extended discussion.

If the condition (11) is satisfied, then close to kL or kR the pairingHamiltonian reads

* ò y s y= D - -  + ⎟⎞⎠( )( ) ( ) ( ) ( ) ( )†p k p p R Ld i h.c. , 12M R R R2

4
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after a phase redefinition of the y ( )pL fields, required if theminus sign holds in (11) [62, 64] (see also in the
following); indeed this sign is unphysical if Diracmass terms are not present at the same time, so that it can be
reabsorbed.

The expression (12) coincides with (2)–(3): now thematrixσ2 acts on the spinor (sublattice) indices as
desired. Therefore, two genuineMajoranamasses are generated, involving the two chiralities separately, and
realizing the corresponding breaking pattern. At variance, the spinless p-wave pairing in [65] also induces (1),
however opposite chiralities are paired, due to the zeromomentumof theCooper pairs,meaning that, in this
case, genuineMajoranamasses are not generated.

A similarmechanismworks also for schemes based on two-component non-relativistic fermions, leading to
N=2. In this case, the required intra-valley pairing has been found favored by various authors close to half
filling (in the presence of a nearest-neighbours attraction and possibly of a subdominant on-site repulsion or
attraction [53, 54, 64, 66]). The relevant (singlet or triplet) pairings areD ~ á  ñ   c c c ci j iA jB iA jB, . For the
triplet pairing in honeycomb lattices, equations (11) and (12) still hold, with the replacement
y y ºa a a-( ) ( ) ( ( ) ( ))p p p pc c,R R A B, , , , and the trace over flavour indexα=±1 is taken. Again, thematrix
σ2 acts on the sublattice indices, instead the identity on the flavour space is understood. The triplet pairing is also
calledKekule ansatz [62, 64]; two configurations, s and p, are possible for it, connectedwith the sign in (12).

Let us briefly discuss about possible experimental set-ups inwhich theMajoranamass term can be
synthesized in theN=2 case. Remarkably, a spin-triplet intra-valley pairing, enforcing theMajorana condition
on the sublattice indices, has been experimentally found in Cd As3 2 crystals [67], which display a semimetal
behavior. A similar pairing can be also induced in ultracold atoms realizations of theKane–Melemodel [68], a
two-species variant of theHaldanemodel, the latter being experimentally realized in [69]: one needs to add a
nearest-neighbor attractive interaction. Let us callV themagnitude of such interaction. In [62], for zero or
negligible on-site interactions, the spin-triplet paired superfluid phase arises forV larger than a critical valueVc,
and it apparently persists also in the limit of vanishing spin–orbit coupling. For V Vc, the spin-triplet order
parameterΔt is an increasing function ofV. To observe such superfluid phase, it is reasonable to expect that one
has to achieveΔt larger than thermal excitations, thus a sufficiently largeV such that D k Tt B , where kB is the
Boltzmann constant andT the temperature of the sample. In ultracold atoms experiments, the two energy scales
have not absolutemeaning, but both depend on the bandwidth (which also determines the Fermi energy), and
can be expressed in units of the tunneling t. Indeed, on one hand, t is an obvious energy scale for the lattice
Hamiltonian and its interactions. On the other hand, in ultracold atom experiments the key parameter is the
achievable entropy per atom,which fixes the value ofT to be some fraction of t, say nºk T tB . In state-of-the-art
experiments with fermionic atoms, values n ~ 0.25 are currently achievable [70]. Assuming such values, from
[62] (figure 9)we see thatΔt0.25t requiresV3t. Suchmagnitudes for the nearest-neighbor interactions
are alsowithin the experimental reach, for instance throughmagnetic dipolar couplings. Indeed, similar
magnitudes have been already demonstrated experimentally, e.g. in bosonic erbium [71]. Themain challenge in
the described scheme appears therefore to combine all the required ingredients in the same experiment.

For the singlet case [54],Majoranamasses can also be synthesized. The intra-valley pairing, for which
D = D( ) ( )k p k p, ,s R s L holds, induces a (modified)Majorana condition involving, in the basis
y =a a ( )kcR L n n R L, , , (n=1, 2 labeling the sublatticeA andB), both the chiral and theflavour indices (a
situation also considered in particle physics [11]), symmetrically. Indeed, using the known relation
  d d d d= -a b a b b an m m n m n, , , , , , , we obtain that the pairing in real-spaceΔi,j≡Δs (independent of n,m) can be
written as

  s sD = á ñ = á ña b a b a b a b( ) ( ) ( )c c c ci i , 13s m n m n m n m n, , , , 2 , 2 , , ,

andwe obtain the low-energyHamiltonian (say close to kR)

* ò y y= D -a a b b( ( ) ( ) ( )) ( )†p k p pMd , 14M R s R R m m n R n, , , , , , , ,

with s s= Äa b a b(( ) ( ))M i im n m n, , , 2 2 , , , . The Fermi statistics impliesD = -D -( ) ( )k p k p, ,s R L s R L , then
D =( )k , 0 0s R L : a vanishing pairing occurs at theWeylmomenta (hidden order [63, 64]), therefore, to obtain a
stable pairing, the atomic filling of the lattice assumes amore relevant role than in the triplet case.

In (11)–(14)we always set D = D∣ ( )∣ ∣ ( )∣( ) ( )k p k p, ,s t R s t L , since inmost of realistic systems the fermionic
attractions are independent on the totalmomentum K of the interacting pair. However, an unbalance between
the pairings can be induced in ultracold atomicmixtures [58, 59], forcing the Bose–Bose or the Fermi–Bose
interaction to depend also on K . A recent proposal to achieve this dependence exploits amagnetic Feshbach
resonancemodulated by twoRaman laser beams propagating along different directions, then exploiting the
Doppler effect [72]. This technique could also yield an additional controllable parameter, beyond the filling and
the interaction strengths, to favor theMajoranamasses [73].

5
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5.1. Simultaneous effect ofDirac(-like)masses
On the honeycomb lattice, a furthermass term can be synthesized by an energy offset between the sublattices
A andB [37, 74] = å - åa a a a a aÎ Î( )† †M c c c c ,i A i i j B j joff off , , , , , , leading to y s y= å +a a a( †M L Loff off 3

y s ya a )†
R R3 , that is not a genuineDiracmass.However, the low-energy spectrumof +hon off reads

l = +( ) ∣ ∣p p MD
2

off
2 , as for standard BCS superfluids [49]. But, when genuineMajoranamassesµmL R are

also included, the total spectrum reads

=  + (∣ ∣ ) ( )pE m M , 15L Rhon,
2

off
2

differing from (5). The reason of thismismatch is thatoff does not have the correct chiral structure.
Let us now consider a different set-up, that is theπ-flux lattice, with freeHamiltonianK [40, 43]. There,

exploiting a peculiar periodicity of themagnetic Brillouin zone, aDiracmass can be achieved by a Bragg pulse
scheme [43]. This procedure, based on the continuous transfer between theWeyl points, effectively synthesizes
the term y y y y= å +a a a a a( )† †MD L R R LBragg in (4) and still leads to l ( )pD , with M MDoff . Now, if one
includes theMajoranamasses, the resulting total spectrum coincides nowwith (5), provided that theminus sign
holds in front of the left pairing in (11) and (12). Technically, the difference between the total spectra for the two
lattices is due to the fact that +hon off and +K Bragg , expanded close to theWeyl nodes, are not equal
but only unitary equivalent [37, 38, 40] (due to the different Paulimatrices appearing in (7) in the two cases
[37, 40]). Indeedoff is not a genuineDiracmass as (4),since it does notmix the opposite chiralities. Therefore,
although the two lattices share the same spectrum in the absence ofMajoranamasses, they behave differently if
the latter terms are also considered.

6.Outlook

Various extensions of the present work are in order, including (i) the synthesis ofMajorana spinors from a
superfluid phase on theπ-flux square (cubic) lattice, possibly via the same schemesworking for the honeycomb;
(ii) the detailed investigation of the simultaneous coexistence ofMajorana andDiracmasses on the described
Weyl lattices, also including fluctuations; (iii) the realization of aMajoranamass in the topologicalHaldane
model [75], recently experimentally achieved [69], and hosting at criticality a unique chiral node. Finally, it
would be interesting to study the Zitterbewegung [4, 76, 77], as a tool to discriminateMajorana andDiracmasses
mD/M. Indeed the oscillation amplitudes are expected to differ in the two cases, due to the different spinor
structures [4]. In the described lattice set-ups, a first estimate of the amplitudes is~ at

mD M
, with oscillations of

order of few lattice sizes.
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