26 research outputs found

    Simulation of the path shape fading memory in the theory of elastoplastically-deformed simple materials with initial loading surface

    Get PDF
    A mathematical theory of strict construction of reduced constitutive relations for Noll’s simple strain-hardening elastoplastic materials with an initial loading surface and a path shape memory fading during the active deformation was developed. The strains and the type of symmetry of the material properties are arbitrary. Constitutive equations were derived for materials without the path shape memory, for those with a weak fading memory, and with an n-th order fading memory. An elastic-perfectly plastic material is defined from the standpoint of the fading memory of path shape. The theory of strict construction of reduced constitutive relations for materials with a 1-st order fading memory of path shape for infinitesimal strains was developed on the assumption that the strain measures are small over the whole history. Special attention is given to isotropic materials

    Influence of Hydrodynamic Regimes on Mixing of Waters of Confluent Rivers

    Get PDF
    At present, a significant weakening of the intensity of transverse mixing at the confluence of large rivers, which is observed in a number of cases, is widely discussed. Since the observed features of the confluence of large watercourses are not only of research interest but also of significant economic importance associated with the characteristics of water management at these water bodies, a large number of works are devoted to their study. Water resources management requires measures for the organization of water use which can be rational only under the understanding of processes occurring in water basins. To explain the phenomenon of suppression of the transverse mixing, which is interesting and important from the point of view of ecology, a wide range of hypotheses is proposed, up to the negation of turbulence in rivers. One of the possible mechanisms for explaining the suppression of transversal mixing can be the presence of transverse circulation manifesting itself as Prandtl’s secondary flows of the second kind. The characteristic velocity of these circulation flows is very small and difficult to measure directly by instruments; however, in our opinion, they can significantly complicate the transverse mixing at the confluence. The proposed hypothesis is tested in computational experiments in the framework of the three-dimensional formulation for dimensions of a real water object at the mouth of the Vishera River where it meets the Kama. Calculations demonstrate that, at sufficiently large flow rates, the two waters practically do not mix in the horizontal direction throughout the depth over long distances from the confluence. It has been found that a two-vortex flow is formed downstream the confluence, which just attenuates the mixing; the fluid motion in the vortices is such that, near the free surface, the fluid moves from the banks to the middle of the riverbed

    A Numerical Study of the Influence of Channel-Scale Secondary Circulation on Mixing Processes Downstream of River Junctions

    Get PDF
    International audienceA rapid downstream weakening of the processes that drive the intensity of transverse mixing at the confluence of large rivers has been identified in the literature and attributed to the progressive reduction in channel scale secondary circulation and shear-driven mixing with distance downstream from the junction. These processes are investigated in this paper using a three-dimensional computation of the Reynolds averaged Navier Stokes equations combined with a Reynolds stress turbulence model for the confluence of the Kama and Vishera rivers in the Russian Urals. Simulations were carried out for three different configurations: an idealized planform with a rectangular cross-section (R), the natural planform with a rectangular cross-section (P), and the natural planform with the measured bathymetry (N), each one for three different discharge ratios. Results show that in the idealized configuration (R), the initial vortices that form due to channel-scale pressure gradients decline rapidly with distance downstream. Mixing is slow and incomplete at more than 10 multiples of channel width downstream from the junction corner. However, when the natural planform and bathymetry are introduced (N), rates of mixing increase dramatically at the junction corner and are maintained with distance downstream. Comparison with the P case suggests that it is the bathymetry that drives the most rapid mixing and notably when the discharge ratio is such that a single channel-scale vortex develops aided by curvature in the post junction channel. This effect is strongest when the discharge of the tributary that has the same direction of curvature as the post junction channel is greatest. A comprehensive set of field data are required to test this conclusion. If it holds, theoretical models of mixing processes in rivers will need to take into account the effects of bathymetry upon the interaction between river discharge ratio, secondary circulation development, and mixing rates

    A numerical study of the influence of channel-scale secondary circulation on mixing processes downstream of river junctions

    Get PDF
    A rapid downstream weakening of the processes that drive the intensity of transverse mixing at the confluence of large rivers has been identified in the literature and attributed to the progressive reduction in channel scale secondary circulation and shear-driven mixing with distance downstream from the junction. These processes are investigated in this paper using a three-dimensional computation of the Reynolds averaged Navier Stokes equations combined with a Reynolds stress turbulence model for the confluence of the Kama and Vishera rivers in the Russian Urals. Simulations were carried out for three different configurations: an idealized planform with a rectangular cross-section (R), the natural planform with a rectangular cross-section (P), and the natural planform with the measured bathymetry (N), each one for three different discharge ratios. Results show that in the idealized configuration (R), the initial vortices that form due to channel-scale pressure gradients decline rapidly with distance downstream. Mixing is slow and incomplete at more than 10 multiples of channel width downstream from the junction corner. However, when the natural planform and bathymetry are introduced (N), rates of mixing increase dramatically at the junction corner and are maintained with distance downstream. Comparison with the P case suggests that it is the bathymetry that drives the most rapid mixing and notably when the discharge ratio is such that a single channel-scale vortex develops aided by curvature in the post junction channel. This effect is strongest when the discharge of the tributary that has the same direction of curvature as the post junction channel is greatest. A comprehensive set of field data are required to test this conclusion. If it holds, theoretical models of mixing processes in rivers will need to take into account the effects of bathymetry upon the interaction between river discharge ratio, secondary circulation development, and mixing rates

    Effect of Current Density on Electrodeposition of Nickel-Organic Microcapsules Composite Coatings

    Get PDF
    A formation of protective composite coatings based on nickel and organic substance of inert nature, containing a corrosion inhibitor, encapsulated in a polymer shell, was studied. The microcapsules were synthesized in an aqueous-organic emulsion using the method of formation of shell of the modified gelatine on the surface of microdroplets. Composite coatings were obtained by electrochemical codeposition of nickel matrix and microcapsules, suspended in the electrolyte. Changes of surface morphology, microhardness and corrosive properties of coatings with respect to changes of deposition parameters of coatings were investigated. The distribution of particle sizes in coatings depending on the current density was studied. It was shown that an increase in the mass fraction of the microcapsules in the coating leads to an increase in its corrosion resistance

    Subthreshold antiproton production in proton-carbon reactions

    Full text link
    Data from KEK on subthreshold antiproton as well as on pi(+-) and K(+-) production in proton-nucleus reactions are described at projectile energies between 3.5 and 12.0 GeV. We use a model which considers a hadron-nucleus reaction as an incoherent sum over collisions of the projectile with a varying number of target nucleons. It samples complete events and allows thus for the simultaneous consideration of all particle species measured. The overall reproduction of the data is quite satisfactory. It is shown that the contributions from the interaction of the projectile with groups of several target nucleons are decisive for the description of subthreshold production. Since the collective features of subthreshold production become especially significant far below the threshold, the results are extrapolated down to COSY energies. It is concluded that an antiproton measurement at ANKE-COSY should be feasible, if the high background of other particles can be efficiently suppressed.Comment: 15 pages, 5 figures, gzipped tar file, submitted to J. Phys. G v2: Modification of text due to demands of referee

    Coherent Structures at the Interface between Water Masses of Confluent Rivers

    No full text
    The paper presents the results of field measurements and numerical modeling of the influence of various factors on the formation of coherent structures in the confluence zone of the Sylva and Chusovaya rivers, which are dammed by the Kamskaya Hydroelectric Power Station (HPS). A characteristic feature of the measured parameters in the zone under study is that they experience both seasonal fluctuations and fluctuations of much higher frequency associated with intraday regulation of the HPS operation. These intraday fluctuations give rise to coherent structures with periodicity T~2–10 min, which manifest themselves in the fluctuations of the specific electrical conductivity of water. The flow velocity also experiences significant fluctuations with a sufficiently wide frequency spectrum, although the characteristic period of its fluctuations is less than the period of electrical conductivity fluctuations and is equal to ~1 min. In order to study the features of the formation of such structures, numerical simulation was carried out within the framework of the three-dimensional approach. Calculations were performed for a 300-meter-long stretch of the Chusovaya River, which is located downstream of the confluence of Chusovaya and Sylva rivers and is the site of the Chusovskoy water intake of Perm city. It was found that the intraday irregularity of HPS operation gives rise to the occurrence of vortex structures in this layer, leading to the temporal variation of concentration at a given point of space and the formation of the wave structure of the concentration field at different moments of time. Time period and spatial scale of such vortex structures depend on the ratio of velocities of water masses and difference in their mineralization and, accordingly, in densities. Moreover, the period of fluctuations is proportional to the ratio of flow velocities. These estimations are of fundamental importance for the implementation of stable selective intake of water with required consumer properties under conditions of intraday irregularity of hydroelectric power station operation
    corecore