108 research outputs found

    Biology and Impacts of Pacific Island Invasive Species. 9. Capra hircus, the Feral Goat (Mammalia: Bovidae)

    Get PDF
    Domestic goats, Capra hircus, were intentionally introduced to numerous oceanic islands beginning in the sixteenth century. The remarkable ability of C. hircus to survive in a variety of conditions has enabled this animal to become feral and impact native ecosystems on islands throughout the world. Direct ecological impacts include consumption and trampling of native plants, leading to plant community modification and transformation of ecosystem structure. Although the negative impacts of feral goats are well known and effective management strategies have been developed to control this invasive species, large populations persist on many islands. This review summarizes impacts of feral goats on Pacific island ecosystems and management strategies available to control this invasive species

    Community Attitudes and Practices of Urban Residents Regarding Predation by Pet Cats on Wildlife: An International Comparison

    Get PDF
    International differences in practices and attitudes regarding pet cats\u27 interactions with wildlife were assessed by surveying citizens from at least two cities in Australia, New Zealand, the UK, the USA, China and Japan. Predictions tested were: (i) cat owners would agree less than non-cat owners that cats might threaten wildlife, (ii) cat owners value wildlife less than non-cat owners, (iii) cat owners are less accepting of cat legislation/restrictions than non-owners, and (iv) respondents from regions with high endemic biodiversity (Australia, New Zealand, China and the USA state of Hawaii) would be most concerned about pet cats threatening wildlife. Everywhere non-owners were more likely than owners to agree that pet cats killing wildlife were a problem in cities, towns and rural areas. Agreement amongst nonowners was highest in Australia (95%) and New Zealand (78%) and lowest in the UK (38%). Irrespective of ownership, over 85% of respondents from all countries except China (65%) valued wildlife in cities, towns and rural areas. Non-owners advocated cat legislation more strongly than owners except in Japan. Australian non-owners were the most supportive (88%), followed by Chinese non-owners (80%) and Japanese owners (79.5%). The UK was least supportive (non-owners 43%, owners 25%). Many Australian (62%), New Zealand (51%) and Chinese owners (42%) agreed that pet cats killing wildlife in cities, towns and rural areas was a problem, while Hawaiian owners were similar to the mainland USA (20%). Thus high endemic biodiversity might contribute to attitudes in some, but not all, countries. Husbandry practices varied internationally, with predation highest where fewer cats were confined. Although the risk of wildlife population declines caused by pet cats justifies precautionary action, campaigns based on wildlife protection are unlikely to succeed outside Australia or New Zealand. Restrictions on roaming protect wildlife and benefit cat welfare, so welfare is a better rationale

    The One Health Approach to Toxoplasmosis: Epidemiology, Control, and Prevention Strategies

    Get PDF
    One Health is a collaborative, interdisciplinary effort that seeks optimal health for people, animals, plants, and the environment. Toxoplasmosis, caused by Toxoplasma gondii, is an intracellular protozoan infection distributed worldwide, with a heteroxenous life cycle that practically affects all homeotherms and in which felines act as definitive reservoirs. Herein, we review the natural history of T. gondii, its transmission and impacts in humans, domestic animals, wildlife both terrestrial and aquatic, and ecosystems. The epidemiology, prevention, and control strategies are reviewed, with the objective of facilitating awareness of this disease and promoting transdisciplinary collaborations, integrative research, and capacity building among universities, government agencies, NGOs, policy makers, practicing physicians, veterinarians, and the general public

    A Science-Based Policy for Managing Free-Roaming Cats

    Get PDF
    Free-roaming domestic cats (i.e., cats that are owned or unowned and are considered ‘at large’) are globally distributed non-native species that have marked impacts on biodiversity and human health. Despite clear scientific evidence of these impacts, free-roaming cats are either unmanaged or managed using scientifically unsupported and ineffective approaches (e.g., trap-neuter-release [TNR]) in many jurisdictions around the world. A critical first initiative for effective, science-driven management of cats must be broader political and legislative recognition of free-roaming cats as a non-native, invasive species. Designating cats as invasive is important for developing and implementing science-based management plans, which should include efforts to prevent cats from becoming free-roaming, policies focused on responsible pet ownership and banning outdoor cat feeding, and better enforcement of existing laws. Using a science-based approach is necessary for responding effectively to the politically charged and increasingly urgent issue of managing free-roaming cat populations

    Urban biodiversity : State of the science and future directions

    Get PDF
    Since the 1990s, recognition of urban biodiversity research has increased steadily. Knowledge of how ecological communities respond to urban pressures can assist in addressing global questions related to biodiversity. To assess the state of this research field in meeting this aim, we conducted a systematic review of the urban biodiversity literature published since 1990. We obtained data from 1209 studies that sampled ecological communities representing 12 taxonomic groups. While advances have been made in the field over the last 30 years, we found that urban biodiversity research has primarily been conducted in single cities within the Palearctic and Nearctic realms, within forest remnants and residential locations, and predominantly surveys plants and birds, with significant gaps in research within the Global South and little integration of multi-species and multi-trophic interactions. Sample sizes remain limited in spatial and temporal scope, but citizen science and remote sensing resources have broadened these efforts. Analytical approaches still rely on taxonomic diversity to describe urban plant and animal communities, with increasing numbers of integrated phylogenetic and trait-based analyses. Despite the implementation of nature-based solutions across the world's cities, only 5% of studies link biodiversity to ecosystem function and services, pointing to substantial gaps in our understanding of such solutions. We advocate for future research that encompasses a greater diversity of taxonomic groups and urban systems, focusing on biodiversity hotspots. Implementing such research would enable researchers to move forward in an equitable and multidisciplinary way to tackle the complex issues facing global urban biodiversity.Peer reviewe

    Collision Mortality Has No Discernible Effect on Population Trends of North American Birds

    Get PDF
    Avian biodiversity is threatened by numerous anthropogenic factors and migratory species are especially at risk. Migrating birds frequently collide with manmade structures and such losses are believed to represent the majority of anthropogenic mortality for North American birds. However, estimates of total collision mortality range across several orders of magnitude and effects on population dynamics remain unknown. Herein, we develop a novel method to assess relative vulnerability to anthropogenic threats, which we demonstrate using 243,103 collision records from 188 species of eastern North American landbirds. After correcting mortality estimates for variation attributable to population size and geographic overlap with potential collision structures, we found that per capita vulnerability to collision with buildings and towers varied over more than four orders of magnitude among species. Species that migrate long distances or at night were much more likely to be killed by collisions than year-round residents or diurnal migrants. However, there was no correlation between relative collision mortality and long-term population trends for these same species. Thus, although millions of North American birds are killed annually by collisions with manmade structures, this source of mortality has no discernible effect on populations

    SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States

    Get PDF
    With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August-24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication

    SNAPSHOT USA 2020: A second coordinated national camera trap survey of the United States during the COVID-19 pandemic

    Get PDF
    Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication

    Egg Eviction Imposes a Recoverable Cost of Virulence in Chicks of a Brood Parasite

    Get PDF
    Background: Chicks of virulent brood parasitic birds eliminate their nestmates and avoid costly competition for foster parental care. Yet, efforts to evict nest contents by the blind and naked common cuckoo Cuculus canorus hatchling are counterintuitive as both adult parasites and large older cuckoo chicks appear to be better suited to tossing the eggs and young of the foster parents. Methodology/Principal Findings: Here we show experimentally that egg tossing imposed a recoverable growth cost of mass gain in common cuckoo chicks during the nestling period in nests of great reed warbler Acrocephalus arundinaceus hosts. Growth rates of skeletal traits and morphological variables involved in the solicitation of foster parental care remained similar between evictor and non-evictor chicks throughout development. We also detected no increase in predation rates for evicting nests, suggesting that egg tossing behavior by common cuckoo hatchlings does not increase the conspicuousness of nests. Conclusion: The temporary growth cost of egg eviction by common cuckoo hatchlings is the result of constraints imposed by rejecter host adults and competitive nestmates on the timing and mechanism of parasite virulence.Michael G. Anderson, Csaba Moskát, Miklós Bán, Tomáš Grim, Phillip Cassey and Mark E. Haube
    corecore