4,563 research outputs found

    Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    Get PDF
    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified

    The design of an omnidirectional antenna system for the Apollo spacecraft

    Get PDF
    Omnidirectional radio antenna system design for Apollo command modul

    Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications

    Get PDF
    In-vacuo cryogenic environments are ideal for applications requiring both low temperatures and extremely low particle densities. This enables reaching long storage and coherence times for example in ion traps, essential requirements for experiments with highly charged ions, quantum computation, and optical clocks. We have developed a novel cryostat continuously refrigerated with a pulse-tube cryocooler and providing the lowest vibration level reported for such a closed-cycle system with 1 W cooling power for a <5 K experiment. A decoupling system suppresses vibrations from the cryocooler by three orders of magnitude down to a level of 10 nm peak amplitudes in the horizontal plane. Heat loads of about 40 W (at 45 K) and 1 W (at 4 K) are transferred from an experimental chamber, mounted on an optical table, to the cryocooler through a vacuum-insulated massive 120 kg inertial copper pendulum. The 1.4 m long pendulum allows installation of the cryocooler in a separate, acoustically isolated machine room. In the laser laboratory, we measured the residual vibrations using an interferometric setup. The positioning of the 4 K elements is reproduced to better than a few micrometer after a full thermal cycle to room temperature. Extreme high vacuum on the 101510^{-15} mbar level is achieved. In collaboration with the Max-Planck-Intitut f\"ur Kernphysik (MPIK), such a setup is now in operation at the Physikalisch-Technische Bundesanstalt (PTB) for a next-generation optical clock experiment using highly charged ions

    Modeling meander morphodynamics over self-formed heterogeneous floodplains

    Get PDF
    This work addresses the signatures embedded in the planform geometry of meandering rivers consequent to the formation of floodplain heterogeneities as the river bends migrate. Two geomorphic features are specifically considered: scroll bars produced by lateral accretion of point bars at convex banks and oxbow lake fills consequent to neck cutoffs. The sedimentary architecture of these geomorphic units depends on the type and amount of sediment, and controls bank erodibility as the river impinges on them, favoring or contrasting the river migration. The geometry of numerically generated planforms obtained for different scenarios of floodplain heterogeneity is compared to that of natural meandering paths. Half meander metrics and spatial distribution of channel curvatures are used to disclose the complexity embedded in meandering geometry. Fourier Analysis, Principal Component Analysis, Singular Spectrum Analysis and Multivariate Singular Spectrum Analysis are used to emphasize the subtle but crucial differences which may emerge between apparently similar configurations. A closer similarity between observed and simulated planforms is attained when fully coupling flow and sediment dynamics (fully-coupled models) and when considering self-formed heterogeneities that are less erodible than the surrounding floodplain

    Excitation of Small Quantum Systems by High-Frequency Fields

    Full text link
    The excitation by a high frequency field of multi--level quantum systems with a slowly varying density of states is investigated. A general approach to study such systems is presented. The Floquet eigenstates are characterized on several energy scales. On a small scale, sharp universal quasi--resonances are found, whose shape is independent of the field parameters and the details of the system. On a larger scale an effective tight--binding equation is constructed for the amplitudes of these quasi--resonances. This equation is non--universal; two classes of examples are discussed in detail.Comment: 4 pages, revtex, no figure

    Annual Variation in Northern Bobwhite Survival and Raptor Migration

    Get PDF
    We estimated survival of radio-marked northern bobwhite (Colinus virginianus) on a managed prairie site in northeast Mississippi during 2 disparate winters (15 Sep-14 Apr 2000–2002). We retrospectively examined factors that may influence bobwhite survival. Pooled survival rates differed substantially between years (S 1⁄4 0.03 6 0.02 in 2000–2001 and S 1⁄4 0.36 6 0.16 in 2001–2002). Regional relative abundance of 3 species of raptors thought to be important predators of bobwhite was greater during 2000 compared to 2001 based on kriging of Christmas Bird Count (CBC) data. We demonstrate an approach for characterizing annual variation in spatial distribution of migratory raptors and suggest that annual variation in local winter predator context may be useful for explaining annual variation in winter survival of local bobwhite populations

    Coherent states for the hydrogen atom

    Get PDF
    We construct wave packets for the hydrogen atom labelled by the classical action-angle variables with the following properties. i) The time evolution is exactly given by classical evolution of the angle variables. (The angle variable corresponding to the position on the orbit is now non-compact and we do not get exactly the same state after one period. However the gross features do not change. In particular the wave packet remains peaked around the labels.) ii) Resolution of identity using this overcomplete set involves exactly the classical phase space measure. iii) Semi-classical limit is related to Bohr-Sommerfield quantization. iv) They are almost minimum uncertainty wave packets in position and momentum.Comment: 9 pages, 2 figures, minor change in language and journal reference adde

    Reducing multiphoton ionization in a linearly polarized microwave field by local control

    Full text link
    We present a control procedure to reduce the stochastic ionization of hydrogen atom in a strong microwave field by adding to the original Hamiltonian a comparatively small control term which might consist of an additional set of microwave fields. This modification restores select invariant tori in the dynamics and prevents ionization. We demonstrate the procedure on the one-dimensional model of microwave ionization.Comment: 8 page

    Folding, Design and Determination of Interaction Potentials Using Off-Lattice Dynamics of Model Heteropolymers

    Full text link
    We present the results of a self-consistent, unified molecular dynamics study of simple model heteropolymers in the continuum with emphasis on folding, sequence design and the determination of the interaction parameters of the effective potential between the amino acids from the knowledge of the native states of the designed sequences.Comment: 8 pages, 3 Postscript figures, uses RevTeX. Submitted to Physical Review Letter
    corecore