1,176 research outputs found

    Limits to scale invariance in alluvial rivers

    Get PDF
    Assumptions about fluvial processes and process–form relations are made in general models and in many site‐specific applications. Many standard assumptions about reach‐scale flow resistance, bed‐material entrainment thresholds and transport rates, and downstream hydraulic geometry involve one or other of two types of scale invariance: a parameter (e.g. critical Shields number) has the same value in all rivers, or doubling one variable causes a fixed proportional change in another variable in all circumstances (e.g. power‐law hydraulic geometry). However, rivers vary greatly in size, gradient, and bed material, and many geomorphologists regard particular types of river as distinctive. This review examines the tension between universal scaling assumptions and perceived distinctions between different types of river. It identifies limits to scale invariance and departures from simple scaling, and illustrates them using large data sets spanning a wide range of conditions. Scaling considerations and data analysis support the commonly made distinction between coarse‐bed and fine‐bed reaches, whose different transport regimes can be traced to the different settling‐velocity scalings for coarse and fine grains. They also help identify two end‐member sub‐types: steep shallow coarse‐bed ‘torrents’ with distinctive flow‐resistance scaling and increased entrainment threshold, and very large, low‐gradient ‘mega rivers’ with predominantly suspended load, subdued secondary circulation, and extensive backwater conditions

    Effect of educational intervention on medication timing in Parkinson's disease: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medicine usage in Parkinson's disease patients is often imperfect, in particular irregular timing of medication. The effect of informing Parkinson's disease patients about the continuous dopaminergic hypothesis (to encourage regular medicine intake) on medication adherence and motor control was tested.</p> <p>Methods</p> <p>Patients were randomised either to the active group (receiving the intervention) or control group (no extra information). Antiparkinson medicine usage was monitored for 3 months before and after the intervention using electronic pill bottles which record the date and time of opening (MEMS<sup>Âź</sup>, Aardex, Switzerland) and data used to calculate the percentage of doses taken at correct time intervals.</p> <p>Results</p> <p>43 patients (52%) were randomised to active counselling, and 40 (48%) were controls (standard management). The intervention effect (difference in timing adherence pre- to post-intervention between the 2 groups) was 13.4% (CI 5.1 to 21.7), p = 0.002. Parkinson motor scores did not change significantly (active group 0.1, CI -3.4 to 3.7) versus controls (4.5, CI 1.6 to 7.1), p = 0.06.</p> <p>Conclusion</p> <p>Timing adherence, but not motor scores, improves by providing patients with extra information. Therapy timing is of potential importance in Parkinson's disease management.</p> <p>Trial registration number</p> <p>NCT00361205</p

    Interfaces: The Next NDE Challenge

    Get PDF
    Nondestructive evaluation, as practiced in the 1960’s, attempted to detect (but was often unable to characterize) the existence of defects in engineering structures. Qualitative criteria were used in the assessment of defect significance and the determination of accept/reject decisions. Advances in elasto-plastic fracture mechanics during the 1970’s focused attention upon the defect size and orientation- if these could be measured, then fracture mechanics was capable of quantitative structural integrity evaluation. The papers presented in this conference series during the 1980’s trace the considerable advances of quantitative nondestructive evaluation in satisfying this measurement need. Nowadays, for monolithic materials with well defined fracture toughness, the overconservative rejection criteria of the past are beginning to be replaced by “retirement for cause” concepts

    Protein and lipid kinase inhibitors as targeted anticancer agents of the Ras/Raf/MEK and PI3K/PKB pathways

    Get PDF
    The identification and characterization of the components of individual signal transduction cascades, and advances in our understanding on how these biological signals are integrated in cancer initiation and progression, have provided new strategies for therapeutic intervention in solid tumors and hematological malignancies. To this end, pharmaceutical efforts have been directed to target different components of the Ras/Raf/MEK and PI3K/PKB pathways. This review article covers recent salient achievements in the identification and development of Raf, MEK, and PI3K inhibitors

    Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    Get PDF
    BACKGROUND: The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. METHODS: AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. RESULTS: Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a ÎČ-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC(50 )was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. CONCLUSION: EGFR pathway components were qualified as targets for inhibition of AP-1 activation using RNAi and small molecule inhibitors. The combination of these two targeted agents was shown to increase the efficacy of EGFR and MEK-1 kinase inhibitors, leading to possible implications for overcoming or preventing drug resistance, lowering effective drug doses, and providing new strategies for interrogating cellular signalling pathways

    Physiological changes to the swallowing mechanism following (Chemo)radiotherapy for head and neck cancer: a systematic review

    Get PDF
    Emerging research suggests that preventative swallowing rehabilitation, undertaken before or during (chemo)radiotherapy ([C]RT), can significantly improve early swallowing outcomes for head and neck cancer (HNC) patients. However, these treatment protocols are highly variable. Determining specific physiological swallowing parameters that are most likely to be impacted post-(C)RT would assist in refining clear targets for preventative rehabilitation. Therefore, this systematic review (1) examined the frequency and prevalence of physiological swallowing deficits observed post-(C)RT for HNC, and (2) determined the patterns of prevalence of these key physiological deficits over time post-treatment. Online databases were searched for relevant papers published between January 1998 and March 2013. A total of 153 papers were identified and appraised for methodological quality and suitability based on exclusionary criteria. Ultimately, 19 publications met the study’s inclusion criteria. Collation of reported prevalence of physiological swallowing deficits revealed reduced laryngeal excursion, base-of-tongue (BOT) dysfunction, reduced pharyngeal contraction, and impaired epiglottic movement as most frequently reported. BOT dysfunction and impaired epiglottic movement showed a collective prevalence of over 75 % in the majority of patient cohorts, whilst reduced laryngeal elevation and pharyngeal contraction had a prevalence of over 50 %. Subanalysis suggested a trend that the prevalence of these key deficits is dynamic although persistent over time. These findings can be used by clinicians to inform preventative intervention and support the use of specific, evidence-based therapy tasks explicitly selected to target the highly prevalent deficits post-(C)RT for HNC

    Modulating sensitivity to drug-induced apoptosis: the future for chemotherapy?

    Get PDF
    Drug resistance is a fundamental problem in the treatment of most common human cancers. Our understanding of the cellular mechanisms underlying death and survival has allowed the development of rational approaches to overcoming drug resistance. The mitogen activated protein kinase family of protein serine/threonine kinases has been implicated in this complex web of signalling, with some members acting to enhance death and other members to prevent it. A recent publication by MacKeigan et al is the first to demonstrate an enhancement of drug-induced cell death by simultaneous blockade of MEK-mediated survival signalling, and offers the potential for targeted adjuvant therapy as a means of overcoming drug resistance

    Smad gene expression in pulmonary fibroblasts: indications for defective ECM repair in COPD

    Get PDF
    Background: Chronic Obstructive Pulmonary Disease ( COPD) is characterized by defective extracellular matrix (ECM) turnover as a result of prolonged cigarette smoking. Fibroblasts have a central role in ECM turnover. The TGF beta induced Smad pathway provides intracellular signals to regulate ECM production. We address the following hypothesis: fibroblasts have abnormal expression of genes in the Smad pathway in COPD, resulting in abnormal proteoglycan modulation, the ground substance of ECM. Methods: We compared gene expression of the Smad pathway at different time points after stimulation with TGF beta, TNF or cigarette smoke extract (CSE) in pulmonary fibroblasts of GOLD stage II and IV COPD patients, and controls. Results: Without stimulation, all genes were similarly expressed in control and COPD fibroblasts. TGF beta stimulation: downregulation of Smad3 and upregulation of Smad7 occurred in COPD and control fibroblasts, indicating a negative feedback loop upon TGF beta stimulation. CSE hardly influenced gene expression of the TGF beta-Smad pathway in control fibroblasts, whereas it reduced Smad3 and enhanced Smad7 gene expression in COPD fibroblasts. Furthermore, decorin gene expression decreased by all stimulations in COPD but not in control fibroblasts. Conclusion: Fibroblasts of COPD patients and controls differ in their regulation of the Smad pathway, the contrast being most pronounced under CSE exposure. This aberrant responsiveness of COPD fibroblasts to CSE might result in an impaired tissue repair capability and is likely important with regard to the question why only a subset of smokers demonstrates an excess ECM destruction under influence of cigarette smoking

    The effectiveness and cost-evaluation of manual therapy and physical therapy in patients with sub-acute and chronic non specific neck pain. Rationale and design of a Randomized Controlled Trial (RCT)

    Get PDF
    Contains fulltext : 88910.pdf (publisher's version ) (Open Access)BACKGROUND: Manual Therapy applied to patients with non specific neck pain has been investigated several times. In the Netherlands, manual therapy as applied according to the Utrecht School of Manual Therapy (MTU) has not been the subject of a randomized controlled trial. MTU differs in diagnoses and treatment from other forms of manual therapy. METHODS/DESIGN: This is a single blind randomized controlled trial in patients with sub-acute and chronic non specific neck pain. Patients with neck complaints existing for two weeks (minimum) till one year (maximum) will participate in the trial. 180 participants will be recruited in thirteen primary health care centres in the Netherlands.The experimental group will be treated with MTU during a six week period. The control group will be treated with physical therapy (standard care, mainly active exercise therapy), also for a period of six weeks.Primary outcomes are Global Perceived Effect (GPE) and functional status (Neck Disability Index (NDI-DV)). Secondary outcomes are neck pain (Numeric Rating Scale (NRS)), Eurocol, costs and quality of life (SF36). DISCUSSION: This paper presents details on the rationale of MTU, design, methods and operational aspects of the trial. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00713843
    • 

    corecore