3,402 research outputs found
Neurotrophin receptor tyrosine kinases regulated with near-infrared light
Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.Peer reviewe
Stationary striations in plasma, created by a short microwave pulse in a waveguide filled with a neutral gas
It was observed experimentally that after crossing a waveguide filled with a
neutral gas, a short powerful microwave pulse leaves a periodic glow of plasma
along the waveguide, persisting several tens of nanoseconds. A theoretical
model is presented which in combination with numerical simulations proposes a
possible explanation of this phenomenon.Comment: 15 pages, 9 figure
Bistable Gradient Networks II: Storage Capacity and Behaviour Near Saturation
We examine numerically the storage capacity and the behaviour near saturation
of an attractor neural network consisting of bistable elements with an
adjustable coupling strength, the Bistable Gradient Network (BGN). For strong
coupling, we find evidence of a first-order "memory blackout" phase transition
as in the Hopfield network. For weak coupling, on the other hand, there is no
evidence of such a transition and memorized patterns can be stable even at high
levels of loading. The enhanced storage capacity comes, however, at the cost of
imperfect retrieval of the patterns from corrupted versions.Comment: 15 pages, 12 eps figures. Submitted to Phys. Rev. E. Sequel to
cond-mat/020356
Diffusive Ionization of Relativistic Hydrogen-Like Atom
Stochastic ionization of highly excited relativistic hydrogenlike atom in the
monochromatic field is investigated. A theoretical analisis of chaotic dynamics
of the relativistic electron based on Chirikov criterion is given for the cases
of one- and three-dimensional atoms. Critical value of the external field is
evaluated analitically. The diffusion coefficient and ionization time are
calculated.Comment: 13 pages, latex, no figures, submitted to PR
Multi-Timescale Perceptual History Resolves Visual Ambiguity
When visual input is inconclusive, does previous experience aid the visual system in attaining an accurate perceptual interpretation? Prolonged viewing of a visually ambiguous stimulus causes perception to alternate between conflicting interpretations. When viewed intermittently, however, ambiguous stimuli tend to evoke the same percept on many consecutive presentations. This perceptual stabilization has been suggested to reflect persistence of the most recent percept throughout the blank that separates two presentations. Here we show that the memory trace that causes stabilization reflects not just the latest percept, but perception during a much longer period. That is, the choice between competing percepts at stimulus reappearance is determined by an elaborate history of prior perception. Specifically, we demonstrate a seconds-long influence of the latest percept, as well as a more persistent influence based on the relative proportion of dominance during a preceding period of at least one minute. In case short-term perceptual history and long-term perceptual history are opposed (because perception has recently switched after prolonged stabilization), the long-term influence recovers after the effect of the latest percept has worn off, indicating independence between time scales. We accommodate these results by adding two positive adaptation terms, one with a short time constant and one with a long time constant, to a standard model of perceptual switching
Long-Term Stability of Visual Pattern Selective Responses of Monkey Temporal Lobe Neurons
Many neurons in primate inferotemporal (IT) cortex respond selectively to complex, often meaningful, stimuli such as faces and objects. An important unanswered question is whether such response selectivity, which is thought to arise from experience-dependent plasticity, is maintained from day to day, or whether the roles of individual cells are continually reassigned based on the diet of natural vision. We addressed this question using microwire electrodes that were chronically implanted in the temporal lobe of two monkeys, often allowing us to monitor activity of individual neurons across days. We found that neurons maintained their selectivity in both response magnitude and patterns of spike timing across a large set of visual images throughout periods of stable signal isolation from the same cell that sometimes exceeded two weeks. These results indicate that stimulus-selectivity of responses in IT is stable across days and weeks of visual experience
Excitation of Small Quantum Systems by High-Frequency Fields
The excitation by a high frequency field of multi--level quantum systems with
a slowly varying density of states is investigated. A general approach to study
such systems is presented. The Floquet eigenstates are characterized on several
energy scales. On a small scale, sharp universal quasi--resonances are found,
whose shape is independent of the field parameters and the details of the
system. On a larger scale an effective tight--binding equation is constructed
for the amplitudes of these quasi--resonances. This equation is non--universal;
two classes of examples are discussed in detail.Comment: 4 pages, revtex, no figure
A Method to Improve the Early Stages of the Robotic Process Automation Lifecycle
The robotic automation of processes is of much interest to
organizations. A common use case is to automate the repetitive manual
tasks (or processes) that are currently done by back-office staff
through some information system (IS). The lifecycle of any Robotic Process
Automation (RPA) project starts with the analysis of the process
to automate. This is a very time-consuming phase, which in practical
settings often relies on the study of process documentation. Such documentation
is typically incomplete or inaccurate, e.g., some documented
cases never occur, occurring cases are not documented, or documented
cases differ from reality. To deploy robots in a production environment
that are designed on such a shaky basis entails a high risk. This paper
describes and evaluates a new proposal for the early stages of an RPA
project: the analysis of a process and its subsequent design. The idea is to
leverage the knowledge of back-office staff, which starts by monitoring
them in a non-invasive manner. This is done through a screen-mousekey-
logger, i.e., a sequence of images, mouse actions, and key actions
are stored along with their timestamps. The log which is obtained in
this way is transformed into a UI log through image-analysis techniques
(e.g., fingerprinting or OCR) and then transformed into a process model
by the use of process discovery algorithms. We evaluated this method for
two real-life, industrial cases. The evaluation shows clear and substantial
benefits in terms of accuracy and speed. This paper presents the method,
along with a number of limitations that need to be addressed such that
it can be applied in wider contexts.Ministerio de EconomÃa y Competitividad TIN2016-76956-C3-2-
- …