14 research outputs found
Distributions angulaires de fragments de fission et validation de sections efficaces de fission
La connaissance actuelle de la distribution angulaire de la fission induite par neutrons est limitée à une énergie maximum de 15~MeV, avec de grands écarts autour de 14~MeV. Seulement 238U et 232Th ont été étudiés jusqu'à 100 MeV et un seul jeu de données existe. Nous avons réalisé une expérience à n_TOF au CERN pour mesurer les distributions angulaires de fragments de fission jusqu'à 1~GeV pour les isotopes 232Th, 235U , 238U , 237Np.L'expérience a été réalisée à l'aide d'un dispositif expérimental à base de compteurs à avalanche à plaques parallèles (PPAC). La méthode basée sur la détection des 2 fragments en coïncidence permet d'identifier sans ambiguïté la fission des autres réactions, notamment dans le domaine de spallation. Au-dessous de 10 MeV nos résultats sont cohérents avec les données existantes. Par exemple, dans le cas de 232Th , en dessous de 10 MeV ils montrent clairement la variation d'anisotropie se produisant dans les résonances vibrationnelles (1.6 MeV) correspondant à des états de transition de J et K donnés (spin total et sa projection sur l'axe de fission), et après l'ouverture de la deuxième chance de fission (7 MeV). Ils apportent une meilleure précision autour de la troisième chance de fission (14 MeV). Aux énergies intermédiaires, au-dessus de 20 MeV nous avons constaté une anisotropie significative mais bien inférieure à l'unique résultat antérieur. Notre résultat est en accord avec la systématique en fissilité du système composite et avec un modèle incluant les phénomènes essentiels, en particulier le preéquilibre. Dans le cadre de cette comparaison l'anisotropie plus grande que pour la fission induite par protons s'explique parfaitement. J'ai par ailleurs exploré et simulé les expériences de criticité qui permettent de tester la précision des données nucléaires. La section efficace de fission de 237Np induite par neutrons avait été mesurée sur l'installation n_TOF au CERN. Par rapport aux résultats antérieurs la section efficace de fission n_TOF était apparue plus élevée de 6-7% au-delà du seuil de fission. Pour vérifier la pertinence des données de n_TOF, nous avons simulé une expérience de criticité effectuée à Los Alamos avec une sphère contenant 6 kg de 237Np. Cette sphère est entourée par de l'uranium hautement enrichi en 235U de façon à approcher la criticité avec des neutrons rapides. La simulation prédit un facteur de multiplication keff en meilleur accord avec l'expérience (l'écart de -0.75% est réduit à +0.25%) quand on remplace la section efficace de fission de 237Np des bibliothèques évaluées par celle de n_TOF. Nous avons également exploré d'autres effets pouvant expliquer l'écart qui existait entre la mesure de criticité et sa prédiction par les simulations, en particulier nous avons testé la section inélastique de 235U et la multiplicité de neutrons de fission de 237Np. Dans les 2 cas la modification requise pour réconcilier l'écart de criticité n'est pas en accord avec les mesures. Des mesures de taux de fission dans des flux de neutrons dont le spectre est connu indiquent également que la section de fission du 237Np pourrait être plus grande de 4 à 5% par rapport à ce qui était admis aujourd'hui.The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238U and 232Th have been investigated up to 100 MeV in a single experiment. The n_TOF Collaboration performed the fission cross section measurement of several actinides (232Th, 235U, 238U, 234U, 237Np) at the n_TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3rd chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n TOF facility at CERN. When compared to previous measurements, the n TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237Np. This sphere was surrounded by enriched uranium 235U so as to approach criticality with fast neutrons. The simulation predicts a multiplication factor keff in better agreement with the experiment (the deviation of 750 pcm is reduced to 250 pcm) when we replace the ENDF/B- VII.0 evaluation of the 237Np fission cross section by the n TOF data. We also explore the hypothesis of deficiencies of the inelastic cross section in 235U which has been invoked by some authors to explain the deviation of 750 pcm. The large distortion that should be applied to the inelastic cross sections in order to reconcile the critical experiment with its simulation is incompatible with existing measurements. Also we show that the nubar of 237Np can hardly be incriminated because of the high accuracy of the existing data. Fission rate ratios or averaged fission cross sections measured in several fast neutron fields seem to give contradictory results on the validation of the 237Np cross section but at least one of the benchmark experiments, where the active deposits have been well calibrated for the number of atoms, favors the n TOF data set. These outcomes support the hypothesis of a higher fission cross section of 237Np.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
Radiological characterisation in view of nuclear reactor decommissioning: On-site benchmarking exercise of a biological shield
[EN] Nearly all decommissioning and dismantling (D&D) projects are steered by the characterisation of the plant being dismantled. This radiological characterisation is a complex process that is updated and modified during the course of the D&D. One of the tools for carrying out this characterisation is the performance of in-situ measurements.
There is a wide variety of equipment and methodologies used to carry out on-site measurements, depending on the environment in which they are to be carried out and also on the specific objectives of the measurements and the financial and personnel resources available. The extent to which measurements carried out with different types of equipment or methodologies providing comparable results can be crucial in view of the D&D strategy development and the decision-making process. This paper concerns an on-site benchmarking exercise carried out at the activated biological shield of Belgian Reactor 3 (BR3). This activity allows comparison and validation of characterisation methodologies and different equipment used as well as future interpretation of final results in terms of uncertainties and sensitivities.
This paper describes the measurements and results from the analysis of this exercise. Other aspects of this exercise will be reported in separate papers. This paper provides an overview of the on-site benchmarking exercise, outlines the participating organisations and the measurement equipment used for total gamma, dose rate and gamma spectrometry measurements and finally, results obtained and their interpretations are discussed for each type of measurement as a function of detector type.
Regarding the dose measurements, results obtained by using a large variety of equipment are very consistent. In view of mapping the inner surface of the biological shield the most appropriate equipment tested might be the organic scintillator, the BGO or even the ionisation chamber. In addition, for mapping this surface, the most appropriate total gamma equipment tested might be the LaBr3(Ce), the thick organic scintillator or the BGO. These measurements can only be used as a secondary parameter in a relative way. Results for the gamma spectrometry are very consistent for all the equipment used and the main parameters to be determined.INSIDER is a EU Horizon 2020 project and received funding from the Euratom Research and Training Programme 2014–2018 under grant agreement No 755554
Distributions angulaires de fragments de fission et validation de sections efficaces de fission
The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238U and 232Th have been investigated up to 100 MeV in a single experiment. The n_TOF Collaboration performed the fission cross section measurement of several actinides (232Th, 235U, 238U, 234U, 237Np) at the n_TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3rd chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n TOF facility at CERN. When compared to previous measurements, the n TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237Np. This sphere was surrounded by enriched uranium 235U so as to approach criticality with fast neutrons. The simulation predicts a multiplication factor keff in better agreement with the experiment (the deviation of 750 pcm is reduced to 250 pcm) when we replace the ENDF/B- VII.0 evaluation of the 237Np fission cross section by the n TOF data. We also explore the hypothesis of deficiencies of the inelastic cross section in 235U which has been invoked by some authors to explain the deviation of 750 pcm. The large distortion that should be applied to the inelastic cross sections in order to reconcile the critical experiment with its simulation is incompatible with existing measurements. Also we show that the nubar of 237Np can hardly be incriminated because of the high accuracy of the existing data. Fission rate ratios or averaged fission cross sections measured in several fast neutron fields seem to give contradictory results on the validation of the 237Np cross section but at least one of the benchmark experiments, where the active deposits have been well calibrated for the number of atoms, favors the n TOF data set. These outcomes support the hypothesis of a higher fission cross section of 237Np.La connaissance actuelle de la distribution angulaire de la fission induite par neutrons est limitée à une énergie maximum de 15~MeV, avec de grands écarts autour de 14~MeV. Seulement 238U et 232Th ont été étudiés jusqu'à 100 MeV et un seul jeu de données existe. Nous avons réalisé une expérience à n_TOF au CERN pour mesurer les distributions angulaires de fragments de fission jusqu'à 1~GeV pour les isotopes 232Th, 235U , 238U , 237Np.L'expérience a été réalisée à l'aide d'un dispositif expérimental à base de compteurs à avalanche à plaques parallèles (PPAC). La méthode basée sur la détection des 2 fragments en coïncidence permet d'identifier sans ambiguïté la fission des autres réactions, notamment dans le domaine de spallation. Au-dessous de 10 MeV nos résultats sont cohérents avec les données existantes. Par exemple, dans le cas de 232Th , en dessous de 10 MeV ils montrent clairement la variation d'anisotropie se produisant dans les résonances vibrationnelles (1.6 MeV) correspondant à des états de transition de J et K donnés (spin total et sa projection sur l'axe de fission), et après l'ouverture de la deuxième chance de fission (7 MeV). Ils apportent une meilleure précision autour de la troisième chance de fission (14 MeV). Aux énergies intermédiaires, au-dessus de 20 MeV nous avons constaté une anisotropie significative mais bien inférieure à l'unique résultat antérieur. Notre résultat est en accord avec la systématique en fissilité du système composite et avec un modèle incluant les phénomènes essentiels, en particulier le preéquilibre. Dans le cadre de cette comparaison l'anisotropie plus grande que pour la fission induite par protons s'explique parfaitement. J'ai par ailleurs exploré et simulé les expériences de criticité qui permettent de tester la précision des données nucléaires. La section efficace de fission de 237Np induite par neutrons avait été mesurée sur l'installation n_TOF au CERN. Par rapport aux résultats antérieurs la section efficace de fission n_TOF était apparue plus élevée de 6-7% au-delà du seuil de fission. Pour vérifier la pertinence des données de n_TOF, nous avons simulé une expérience de criticité effectuée à Los Alamos avec une sphère contenant 6 kg de 237Np. Cette sphère est entourée par de l'uranium hautement enrichi en 235U de façon à approcher la criticité avec des neutrons rapides. La simulation prédit un facteur de multiplication keff en meilleur accord avec l'expérience (l'écart de -0.75% est réduit à +0.25%) quand on remplace la section efficace de fission de 237Np des bibliothèques évaluées par celle de n_TOF. Nous avons également exploré d'autres effets pouvant expliquer l'écart qui existait entre la mesure de criticité et sa prédiction par les simulations, en particulier nous avons testé la section inélastique de 235U et la multiplicité de neutrons de fission de 237Np. Dans les 2 cas la modification requise pour réconcilier l'écart de criticité n'est pas en accord avec les mesures. Des mesures de taux de fission dans des flux de neutrons dont le spectre est connu indiquent également que la section de fission du 237Np pourrait être plus grande de 4 à 5% par rapport à ce qui était admis aujourd'hui
Measurements of neutron cross sections for advanced nuclear energy systems at n_TOF (CERN)
The n_TOF facility operates at CERN with the aim of addressing the request of high accuracy nuclear data for advanced nuclear energy systems as well as for nuclear astrophysics. Thanks to the features of the neutron beam, important results have been obtained on neutron induced fission and capture cross sections of U, Pu and minor actinides. Recently the construction of another beam line has started; the new line will be complementary to the first one, allowing to further extend the experimental program foreseen for next measurement campaigns
Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN
The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction
238U(n, γ) reaction cross section measurement with C6D6 detectors at the n_TOF CERN facility
The radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,γ) cross section measurement performed at n_TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction
Neutron capture cross section measurement of 238U at the CERN n_TOF facility in the energy region from 1 eV to 700 keV
The aim of this work is to provide a precise and accurate measurement of the 238U(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross section of 238U should be further reduced to 1–3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the n_TOF facility, were proposed and carried out within the 7th Framework Project ANDES of the European Commission. The results of one of these 238U(n,γ) measurements performed at the n_TOF CERN facility are presented in this work. The γ-ray cascade following the radiative neutron capture has been detected exploiting a setup of two C6D6 liquid scintillators. Resonance parameters obtained from this work are on average in excellent agreement with the ones reported in evaluated libraries. In the unresolved resonance region, this work yields a cross section in agreement with evaluated libraries up to 80 keV, while for higher energies our results are significantly higher
Experimental neutron capture data of 58Ni from the CERN n_TOF facility
The neutron capture cross section of 58Ni was measured at the neutron time of flight facility n_TOF at CERN, from 27 meV to 400 keV neutron energy. Special care has been taken to identify all the possible sources of background, with the so-called neutron background obtained for the first time using high-precision GEANT4 simulations. The energy range up to 122 keV was treated as the resolved resonance region, where 51 resonances were identified and analyzed by a multilevel R-matrix code SAMMY. Above 122 keV the code SESH was used in analyzing the unresolved resonance region of the capture yield. Maxwellian averaged cross sections were calculated in the temperature range of kT = 5 – 100 keV, and their astrophysical implications were investigated
GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF
The neutron sensitivity of the C6D6 detector setup used at n_TOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a natC sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured natC yield has been discovered, which prevents the use of natC data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross-section measurements