187 research outputs found

    Compensating for pneumatic distortion in pressure sensing devices

    Get PDF
    A technique of compensating for pneumatic distortion in pressure sensing devices was developed and verified. This compensation allows conventional pressure sensing technology to obtain improved unsteady pressure measurements. Pressure distortion caused by frictional attenuation and pneumatic resonance within the sensing system makes obtaining unsteady pressure measurements by conventional sensors difficult. Most distortion occurs within the pneumatic tubing which transmits pressure impulses from the aircraft's surface to the measurement transducer. To avoid pneumatic distortion, experiment designers mount the pressure sensor at the surface of the aircraft, (called in-situ mounting). In-situ transducers cannot always fit in the available space and sometimes pneumatic tubing must be run from the aircraft's surface to the pressure transducer. A technique to measure unsteady pressure data using conventional pressure sensing technology was developed. A pneumatic distortion model is reduced to a low-order, state-variable model retaining most of the dynamic characteristics of the full model. The reduced-order model is coupled with results from minimum variance estimation theory to develop an algorithm to compensate for the effects of pneumatic distortion. Both postflight and real-time algorithms are developed and evaluated using simulated and flight data

    Some recent results in aerospace vehicle trajectory optimization techniques

    Get PDF
    Algorithms and computation techniques for solving trajectory optimization problem

    Assessment of avionics technology in European aerospace organizations

    Get PDF
    This report provides a summary of the observations and recommendations made by a technical panel formed by the National Aeronautics and Space Administration (NASA). The panel, comprising prominent experts in the avionics field, was tasked to visit various organizations in Europe to assess the level of technology planned for use in manufactured civil avionics in the future. The primary purpose of the study was to assess avionics systems planned for implementation or already employed on civil aircraft and to evaluate future research, development, and engineering (RD&E) programs, address avionic systems and aircraft programs. The ultimate goal is to ensure that the technology addressed by NASa programs is commensurate with the needs of the aerospace industry at an international level. The panel focused on specific technologies, including guidance and control systems, advanced cockpit displays, sensors and data networks, and fly-by-wire/fly-by-light systems. However, discussions the panel had with the European organizations were not limited to these topics

    Clust-IT:Clustering-Based Intrusion Detection in IoT Environments

    Get PDF
    Low-powered and resource-constrained devices are forming a greater part of our smart networks. For this reason, they have recently been the target of various cyber-attacks. However, these devices often cannot implement traditional intrusion detection systems (IDS), or they can not produce or store the audit trails needed for inspection. Therefore, it is often necessary to adapt existing IDS systems and malware detection approaches to cope with these constraints. We explore the application of unsupervised learning techniques, specifically clustering, to develop a novel IDS for networks composed of low-powered devices. We describe our solution, called Clust-IT (Clustering of IoT), to manage heterogeneous data collected from cooperative and distributed networks of connected devices and searching these data for indicators of compromise while remaining protocol agnostic. We outline a novel application of OPTICS to various available IoT datasets, composed of both packet and flow captures, to demonstrate the capabilities of the proposed techniques and evaluate their feasibility in developing an IoT IDS

    Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data

    Get PDF
    BACKGROUND: In recent years, outcome prediction models using artificial neural network and multivariable logistic regression analysis have been developed in many areas of health care research. Both these methods have advantages and disadvantages. In this study we have compared the performance of artificial neural network and multivariable logistic regression models, in prediction of outcomes in head trauma and studied the reproducibility of the findings. METHODS: 1000 Logistic regression and ANN models based on initial clinical data related to the GCS, tracheal intubation status, age, systolic blood pressure, respiratory rate, pulse rate, injury severity score and the outcome of 1271 mainly head injured patients were compared in this study. For each of one thousand pairs of ANN and logistic models, the area under the receiver operating characteristic (ROC) curves, Hosmer-Lemeshow (HL) statistics and accuracy rate were calculated and compared using paired T-tests. RESULTS: ANN significantly outperformed logistic models in both fields of discrimination and calibration but under performed in accuracy. In 77.8% of cases the area under the ROC curves and in 56.4% of cases the HL statistics for the neural network model were superior to that for the logistic model. In 68% of cases the accuracy of the logistic model was superior to the neural network model. CONCLUSIONS: ANN significantly outperformed the logistic models in both fields of discrimination and calibration but lagged behind in accuracy. This study clearly showed that any single comparison between these two models might not reliably represent the true end results. External validation of the designed models, using larger databases with different rates of outcomes is necessary to get an accurate measure of performance outside the development population

    Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review

    Get PDF
    This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS). This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid interfaces affected by various physical factors, such as fluid and solid species, surface roughness, surface patterns, wettability, temperature, pressure, fluid viscosity and polarity. This review offers an overview of the major achievements, including experiments, theories and molecular dynamics simulations, in the field with particular emphasis on the effects on microfluidics and nanofluidics in nanoscience and nanotechnology. In Section 1 we present a brief introduction on the backgrounds, history and concepts. Sections 2 and 3 are focused on molecular momentum transport at gas-solid and liquid-solid interfaces, respectively. Summary and conclusions are finally presented in Section 4
    corecore