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1. INTRODUCTION 

Fundamental necessary and sufficient conditions in the calculus of 

variations, basic to the aerospace vehicle trajectory optimization problem, 

have been under investigation by mathematicians for  many decades, in 

fact, for hundreds of years. 

problem have been under investigation for many years, but it is only in 

the last  five or ten years that this extremely important area has received 

intensive effort. 

for the solution of the aerospace vehicle trajectory optimization problem 

and this paper presents some original recent results in four a reas  a s  

Algorithms for the solution of the optimization 

There a r e  several  fundamental approaches to algorithms 

studied by the co-authors during the course of their  research. 

First of all, the computation of optimal trajectories by the method 

of quasilinearization is presented and it is shown how bounds may be 

placed on continuous controls directly in the method of quasilinearization 

without additional variables. 

in other research laboratories have indicated rather clearly that this 

method of quasilinearization is one of the most promising methods available 

for aerospace vehicle trajectory optimization, and therefore the results 

in this section take on an additional significance a s  a result. 

of the techniques developed here  the trajectory producing minimum 

heating of an entry body has been found to demonstrate that the method is 

generally applica.ble. 

Our studies and the studies of individuals 

A s  an example 

One aspect of aerospace vehicle trajectory optimization emerging 

with more advanced space systems is that of complex interacting tra- 

jectories. 

a multi - level (two -level) technique to optimize interacting trajectories 

(subarcs) that may contain discontinuities in the state, the state derivatives 

and/or the cost function at the subarc interfaces. 

optimize each subarc independently and then to use a 2nd-level controller 

The next section presents contributions in this a r ea  and applies 

The procedure is to 

to adjust the interface conditions to achieve an optimal trajectory. 

is an iterative procedure which in this paper uses a 2nd-level gradient 

controller. 

This 
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In problems of optimal trajectories the final time T may be fixed 

o r  it may be variable. 

determined which minimizes the given performance criterion. 

F o r  each fixed time, an optimal trajectory may be 

The 

variable time problem involves finding that final time for which the 

minimized performance criterion is minimal over all other final times. 

This is the problem considered in the next section. The criteria used 

to determine the optimum in such techniques as Pontryagin's maximum 

principle a r e  merely necessary conditions rather than sufficient con- 

ditions. 

that the Hamiltonian H = 0 may be satisfied for many different final times 

as  will  be demonstrated in this section of the paper. 

will be given in which several local minima and maxima of the cost 

functional exist. In order to solve the variable time problem, additional 

techniques a re  needed to vary the first  time T so that the Hamiltonian is 

driven to zero. 

In the variable time problem the additional necessary condition 

In fact an example 

Such techniques will be developed in this section. 

The paper concludes with a section presenting some new results, 

techniques, and algorithms for the variable end point problem. 

previous section we considered the problem f o r  which the terminal con- 

dition was some fixed constant vector in n-dimensional Euclidean space. 

This final section considers problems in which the terminal vector is 

merely constrained to lie in some (n-k) dimensional manifold of n- 

dimensional Euclidean space. 

In the 
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2. THE COMPUTATION OF OPTIMAL TRAJECTORIES BY 
THE METHOD OF QUASILINEARIZATION 

2. 1 Introduction 

This section is concerned with the computation of optimal tra- 

jectories and shows how bounds may be placed on continuous control 

directly in the method of quasilinearization without additional variables. 

The trajectory producing minimum heating of an entry body has been 

found to demonstrate that the method is generally applicable. 

Previous application of the method of quasilinearization to the 

optimal trajectory problem (,.:*-e References 2.1,2.2,2.3 and others) 

have used the technique of eliminating the control from the problem by 

inverting the partial of the pseudo-Hamiltonian with respect to control. 

In many instances this cannot be done o r  is inconvenient and results in 

the addition of extra variables i f  bounds are placed on the control. 

This difficulty has been cited in Reference 2.5. 

2.4 

The problem to be solved is that of minimizing an integral while 

satisfying n nonlinear differential equations and boundary conditions. 

In a Pontryagin Maximum Principle Formulation: 

j ,  = f  (x,u,t) ; 0 5 t 5 T - -1 

rn 

J = j0 fo(x, u)dt 

u = u  m i n H  i u  t 
For notational simplicity the short hand 

T T - y = (x,+c/) 

is employed where y is a 2n vector. Thus 
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(2.3) 

It is assumed without loss oL genera ity that the 2n boundary conditions 

are divided equally between y(0) and y(T). - - 

2.2 

for the nth iteration: 

The Modified Method of Quasilinearization is formulated as follows 

u n I  = u minr3I 
'1 ,  

(2.4) 

n+l - n+l  n+l  n-kl Y - z  + z  g - 

where z is a dummy 2n vector, the superscripts indicate iteration number, 

g in  indicates that the function g is evaluated on the nt" trajectory, 2 is 

a 2n by 2n matrix, and g is a 2n vector. 

n+l  The constant vector is chosen such that: 

where the equality holds only for the 
components specified by the 2n boundary 
conditions (2.5)  

n+l  

nt-1 

Tit-1 
- y 

- y 

Only n components of the 2n for g need be computed. A t  t = 0 

( 0 )  = - y0(0) 

(TI = - yo(T) 

There a r e  n boundary conditions specified at t = O  which must be 
n+l  

satisfied by both - yn(0) and - y 

of g are zero. 

(0) with the consequence that n components 
n t l  

Similarly an nxn matrix formed from the 2n x 2n transition matrix 
n+1 

need be inverted in the determination of the n non-zero components of : 
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where the star indicates the deletion of the unnecessary components. 

If thk final t ime is free than a change of independent variable 

is an undetermined constant and 0 5 7 5 1 is used. from t to PT where 

The constant P is determined in the method of quasilinearization by 

employing H = 0. 

2 .6  It can be shown theoretically, using the Contraction Mapping 

Principle, that the method converges quadratically under some rather 

restrictive conditions. 

heating entry problem was solved for both bounded and unbounded con- 

trol. 

To show that the method is practical the minimum 

2.3 The Entry Problem 

The entry problem formulated is that of finding the control to 

minimize the convective heating for a low l i f t  to drag entry vehicle. 

control is the vehicle attitude. 

The state equations are:  

g s iny  v = - -  0 

2m (1+5)2 

V f =  - siny R 

9 

The 

L a -  
P 2m go 
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C (u) = 1.174 - 0.9 COS 2 u D 

L C (u) = 0.6 s in2  u 

The boundary conditions are 

v(0) = 35,000. f t  /sec. 

y(0) = 8.10 

g o )  = 0 .0191 

v(T) = 27,000 f t l sec  

y(T) = 0. Oo 

S(T) = 0.0120 

The criterion function is the integral of the convective heating 

J = s T C  V3& dt 
0 

(2.10) 

Figure 2 . 1  illustrates the problem geometry while Table 2.1 

defines the nomenclature and the problem constants. 

Since the final time is free,  the integrations a re  performed with 

respect to a dummy variable T where: 

t = p 7  ; O r T s 1  (2.11) 

The constant p is determined in the usual  manner, employing the additional 

constraint H 5 0. 

In employing the computational procedure of Equations (2. 1) to 
au n 
a Y  

(2.7) the te rm - I appears. 

the pseudo Hamiltonian with respect to control either directly if  the 

partial can be inverted for u = u(y, t )  o r  by perturbations if it cannot. 

methods have been tried with success in the bounded and unbounded con- 

t ro l  cases.  

perturbations must be found by some other technique, such as the gra-  

dient method for functions. 

The term can be found from the partial of 

Both 

If the partial cannot be taken then the control u and its 

Once a convergent initial guess is found the method converges 

quadratically until the effects of round-off and truncation e r r o r s  dominate. 

The task of obtaining a convergent initial guess for both the state and the 

adjoint varia.bles can be difficult. 
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The problem can be alleviated by the simple expedient of employing 
-n+l n+l  
- y as the n+lst  trajectory in place of - y where 

(2.12) 

n+l and, where y 

If 6 is zero then the solution is stationary, if 6 is one the usual method of 

quasilinearization is obtained. 

quadratic, but can be achieved for  a wider range of initial trajectories. 

The increased range of convergence can be shown theoretica.lly. 

is derived from Equation (2.4) for the first few iterations. - 

F o r  6 's  in between convergence is not 

The solution for the entry problem posed is given in Figures 2.2 

and 2.4. In Figure 2 . 2  the unbounded control is compared to control 

bounded at f 2 2 .  5O. 

v, -y,t is shown. 

is shown in  Figure 2.4.  

It can be seen that the bounded control-case converges at the same rate 

as the unbounded case. The final vafue of J was  27669 BTU/ft for un- 

bounded control and 32330 BTU/f t  

In Figure 2. 3'the time history of the state variables 

The time history of the corresponding adjo::it equations 

The convergence rates a r e  given in  Figure 2.5. 

2 

2 for the bounded case. 
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TABLE 2 . 1  

TABLE OF SYMBOLS IN R E E N T R Y  PROBLEMS 

ve lo c it y 

no rmaliz ed altitude 

flight path angle 

down range distance 

ratio of frontai a rea  to  vehicle mass  
2 = 0.532 f t  / l b  

gravitational constant 

= 32.172 f t l sec  

air density at sea level 

= 0.2704 d slug/ft 

exponential constant 

= 0.426 x 10 

earth radius 
6 

= 20.9 x 10  f t  

drag coefficient 

lift coefficient 

2 

3 

-4 
* / f t  

drag and l i f t  coefficients 
‘DL’ ‘DO’ ‘LO - 
C - conve ct ive constant 

-7  
= 0.2 x 10 

N - radius of vehicle nose 

= 4.0 f t  

a 
P 

- sensed acceleration 
- control constraint 

1 U 
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TRAJECTORY 

ICLE 

AnB = h = altitude of vehicle above 
Eai th  

v = velocity vector 

y = angle between local 
horizon and velocity 

: vectiir 

p = down range distance 

h 5 = - =  normalized altitude 
R -  

REENTRY VEHICLE COORDINATE SYSTEM 

FIGURE 2 . 1  
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3. MULTI-LEVEL TECHNIQUES APPLIED TO COMPLEX 
INTERACTING TRAJECTORY SYNTHESIS 

3 .1  .Introduction 

This section applies a multi-level (two level) technique to optimize 

interacting trajectories (subarcs) that may contain discontinuities in  the 

state, the state derivatives and/or the cost function at the subarc inter- 

faces. 

use a 2nd-level controller to adjust the interface conditions to achieve an 

optimal. trajectory. 

a 2nd-level gradient controller. 

The procedure is to optimize each subarc independently and then to 

This is an iterative procedure which in this paper uses 

3 . 2  Problem Statement 

Macko3' extended the multi-level concepts of Lasdon3' and 

Brosilow3' 

tems. The results can also be applied to interacting trajectories. 3* 
i 

sider  the optirnzl control problem of minimizing I with respect to - u . 

to decomposition and optimization of non-linear dynamic sys- 

Con- 

subject to 
i i i i i  

j z  = f  ( z , s , t ) ,  i = l , . . . , N  - -  
1 1  1 x (t ) = x  

0 - 0  - 

i = 1, 2 , .  . . ,N-1 

(3.1) 

(3..4) 

(3. 5) 

The superscript refers  to the subarc number. 

continuous and differentiable over its subarc, but discontinuities may 

occur between subarcs. 

Each function is assumed 

The interface constraints for the state variables 
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and times are given by Equation (3.5). If x is an n-vector then the @ in 

Equation (3.5) are nS1-vectors (an interface constraint equation for  each 

state and for  time). 

added to Equation (3.1) with Lagrange multipliers to form 

- - 

The constraint equations, (3.2), (3.4) and (3.5) can be 

(3. 6) 

3.3 Solution Using Multi-Level Optimization 

i Now J must be minimized with respect to - u . By applying the 

the initial conditions on each subarc 3.3,3.4 feasible method of decomposition 

a r e  chosen as known quantities and then J easily decomposes into N 

separate minimization problems 

i 
: r t c  : ;T : 

where 

T N  tN T 
JN= ii IFN+ ($'N) - EN - - kN)] dt + 

0 

N J = C  Ji 
i=l 

i By satisfying the necessary condition that the first variation of each J 

vanish, all the te rms  of the first variation of J also vanish with the pos- 

sible exception of those below: 

i+l 

ax 

(3.  9) 
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These a r e  the optimal conditions that may not be satisfied in general 

i+l 
X 
0 

i+l and t were fixed for each subarc. i+l because x 
0 0 

i+l 
-0 -0 new 

Now since all the constraints have been satisfied by the subarc 

minimization 

J = I  (3.10) 

Also since we a r e  minimizing I subject to the constraints, 61 should be 

negative. 

sufficient condition for d J <  0 follows from Equation (3.9) if 

Therefore, by Equation (3. 10) 6 5  should be made negative. A 

i+l i+l T T T a& 
ax 

6x = - k [(@ ) - (Q~)  - (pi) ~ + 1 ]  

dti+l 

-0 

1 [ i+l i + l T  i+l i T  Xji = - k  -F - ! @  )f - ( e )  - 
at1+' 0 

Where k > 0. 

it has been minimized. 

iteration let 

The other terms come from the appropriate subarc 

Using Equations (3. 11-3. 12), for the next 

+ dti+l 
0 o Id 0 new 

(3.11) 

(3.12)  

after 

(3. 13) 

(3. 14) 

Equations (3, 13-3. 1-11 give a simple 2nd-level gradient controller that 

will converge under the stated assumptions toward the minimum. How- 

ever, i n  the vicinity of the minimum, k must decrease continuously o r  

this iterative solution method becomes unstable a s  is true of simple grad- 

ient methods. 

3.4 An Exa'mple 

This technique was used to maximize the range of a constant thrust 

rocket vehicle outside the earth's significant atmosphere between two fixed 

attitudes and in  a fixed time. 3*4 An abrupt change in thrust level occurred at 
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a fixed time during flight. 

interface of the two subarcs which were optimized separately. 

time of this discontinuity was fixed, t 

in the state variables at the discontinuity were given by 

The t ime of t h r u s t  discontinuity determined the 

Since the 
2 

could not be changed and the change 
0 

(3. 15) 

(Here the sign preceding k is positive since the range is being maximized,) 

Thus, it is seen in this example that the 2nd-level gradient controller 
2.  

simply drives the trajectory at t1 = t f o  
joint variables , - $', are continuous; a requirement of the Weierstrass - 

Erdmann corner conditions. 

to the point in space where the ad- 

Computationally the subarcs were each minimized at the f i rs t  level 

using the 2nd variational method of Breakwell. 3* 

troller used Equation (3.15) and converged well until it approached the maxi- 

mum range where the solution showed the expected oscillations about that 

maximum. 

The 2nd level gradient con- 

3.  5 Conclusions 

The multi-level optimization technique appears to be a straight- 

forward way to synthesize interacting trajectories. 

able to u s e  different optimization techniques on the different subarcs (pro- 

vided the techniques will  calculate the adjoint variables) may offset the dis- 

advantage of repeated subarc optimizations. 

one to concentrate effort on optimizing only small  portions of the trajectory 

at a time (1st level), Then the 2nd-level controller can drive the first-level 

solutions to the overall optimal trajectory which may be highly complex. 

The advantage of being 

In any event this method allows 
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4. VARIABLE TIME OPTIMAL TRAJECTORIES 
FOR AEROSPACE VEHICLES 

4. 1 Introduction 

In problems of optimal trajectories, the final time T may be fixed 

or it may be variable. 

determined which minimizes the given performance criterion. 

time problem involves finding that final time for which the minimized per  - 
formance criterion is minimal over all other final times. 

For each fixed time, an optimal trajectory may be 

The variable 

The criteria used to determine the optimum in such 

techniques as  Pontryagin's maximum principle a r e  merely necessary 

conditions rather than sufficient conditions In general it is assumed 

that solutions obtained using such necessary conditions a r e  indeed opti- 

mum because if one knows that a minimum (or maximum) of the per- 

formance criterion exists, and that only one solution exists which satisfies 

the necessary conditions, then this solution must be the desired optimum. 

This assumption is generally valid fo r  the fixed time problem when one is 

merely looking €or a solution to a set  of differential equations which 

satisfies given boundary conditions for a fixed time. 

variable time problem, the additional necessary condition that the 

Hamiltonian H = 0 may be satisfied for many different f inal  times, a s  will 

be demonstrated in the sections to follow. 

However, in the 

Let us consider the performance criterion given by: 

(4.1) 

where X = x(T) is the terminal state of the system given by k = f (x, u), with 

- u the r-dimensional control vector. Let u s  define: 
- -  - -  

S(T, X) = J(Z, T,X) (4.2) 

where u is the optimal control which minimizes J for the given T and X. 
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It can be shown 7 a  that the Hamiltonian 

(4 .3)  

which is , of course, the Hamilton-Jacobi equation from the calculus of 

variations. However, its relation to Pontryagin's necessary condition 

for a variable t ime optimum has never been properly explored. 

If we consider a graph of S(T,X) vs. T for fixed X, that is, if  - 
we consider a graph of the values of the minimum performance criterion 

for  each fixed t ime T plotted a s  a function of T, the Hamiltonian H is 

the negative of the derivative with respect to T of this curve. Thus the 

condition H = 0 for  a minimum of S(T,X) is a necessary condition in the 

same sense that the condition that the derivative of a general function be 

zero is a necessary condition for the minimum of that function. 

the condition H = 0 will thus also hold f o r  a local maximum of the 

function S(T, X), and any computational algorithm employing only the 

H = 0 condition for  variable time optimum can yield such a local maxi- 

mum i f  it exists. In the sections to  follow, an example will be given -h 

which both a local minimum and a local maximum of S(T, X) do indeed 

exist (in fact, f o r  which several such local maxima o r  minima exist). 

However, 

The application of the maximum principle t o  a fixed time problem 

A standard technique fo r  results in a two-point boundary value problem. 

solving the two -point boundary value problem is quasilinearization, 4 0  

this technique will be used in this paper to solve the fixed time problem. 

In order  to solve the variable t ime problem, additional techniques a r e  

needed to vary the first time T s o  that the Hamiltonian is driven to zero. 

and 

Such techniques will be developed in the sections to follow. 

4.2 Computational Algorithm Using H = 0 Necessary Condition To Solve 
The Variable Time Problem 

A l l  methods of solving the variable time problem developed to 

this time use only the H = 0 necessary condition and assume the resulting 

solution is the only one and thus the desired optimum. 

method is to iterate on the final time T and n-1 of the n initial adjoint 

conditions (n total variables) until the n terminal state variable conditions 

One standard 
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are satisfied, and at each iteration use the H = 0 condition to determine 

the nth initial adjoint condition. In this manner, the H = 0 condition is 

always satisfied, and when the boundary conditions are finally reached, 

the resulting solution is a possible solution of the variable t ime problem, 

However, in this process, the optimum solution at only one final time T 

is obtained. 

Since we want to  consider the variable time problem more o r  less 

separately from the other aspects of the optimal control problem in order  

to judge the validity of using only the H = 0 condition, we are going to 

derive an algorithm which solves a ser ies  of fixed t h e  problems, iterating 

on the final t ime T until the H = 0 condition is satisfied. This algorithm 

will solve the fixed t ime problem for an initial guess on T, compute an 

increment on T, 6T ,  such that when the fixed t ime problem for new final 

time T + 6T is solved, a Hamiltonian closer to zero will result, and 

through repeated iterations finally arr ive at the T for which H = 0. 

If we take our first solution for which the terminal conditions a r e  

satisfied at time T, and let the t ime vary by an amount 6TJ this will 

produce an e r r o r  in terminal conditions which is given to a f i rs t  order 

of approximation by 

6x(T) - = - H(T) 6T (4.4) 

If we want to resolve the two-point boundary problem for the new 

T n + 6Tn, we will have to  vary our initial adjoint condition - -  X = @(O) 

by some vector 

rect the terminal conditions which will also make the Hamiltonian equal 

6X - e The question is what 6T will require a 6 X  - to cor-  

t6 zero. 

be zero at the initial conditions. 

Since the Hamiltonian is constant, we need only require that it 

A standard set of differential equations may be written which may 

be used to calculate te rms  of the form ax.(t)/8Aj, which give the effect 

of varying the initial adjoint condition X 
These equations are given by 

1 
on the state variable x.(t). 

j 1 4.4 
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T where H = - f - - @ - fo, $ = - (e/, /Elis a n-vector with elements 
. I  

aH/ax. in, [ w/aA] and [ ax/aX] are nxn matrices with elements 3$i/ahj 
1 

and axi/8X respectively. The initial conditions are ax./aA = 0 for a11 
3' 1 j  

a$./aX. = 0 for  i # j; and all.,/aA. = 1 for i = j. It should be noted i, j; 

that, in  order  to  simplify (4.5), u = u(x,$) has been substituted into 

H = H($, x, u) to make H = H(@, x), thus eliminating t e rms  such as 

1 J  J 

[-I a2H [g] in (4.5). If we integrate these differential equations to  time 

T, and let [Y] represent the matrix of elements Y 

then a variation in initial adjoint conditions 

order  of approximation, a change in the value of the state variables at 

time t = T given by 6x(T) = [Y]  6X . 

= ax, /ah. 1 t = T, 

will produce, to a first 
i j  1 J  

6X - 

- - 

However, since the variation in - x(T) due to a variation in final 
' 

time of 6T is given by (4.4), we want to vary - $ ( O )  by 6X - t o  counteract 

this variation, that is, choose 6X so that - 

The Hamiltonian at t = 0 is given by 

Hn = fT(0)  * $n(0) - f (0) 
0 - - (4. 8) 

where f ( 0 )  = f (x(O), - $(a)) ,  and - f(0) = - -  f (x(O), g(0))  since 
0 0 -  

- 4 0 )  = 2 ( g o ) ,  - $ ( O ) ) .  

n+l 
= f T ( 0 )  . 4 (0) - f (0) = 0. 

n+l 
0 - We want the new H 
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n+l n n+l 
If we let q5 ( 0 )  = - r// + 6Xn, - and se t  H = 0 ,  - 

Hn+l= f x(O), r,hn(O) + 6hn). - ( gn(0) + 6Xn)  - c - 

(4.9) 

If we substitute Equation (4.7) in  (4.91, we obtain a single equation 

in a single unknown 6T, which may be solved for  6T. That is, [Y], 

k(T), q5 (0), and - x(0) a re  all either known originally o r  were determined 

in solving the problem for the previous T. 

n 
- - 

If we then apply the 6X - given by (4.7) for the 6T determined a s  
n+l n n above and apply - @ (0) = - q5 ( 0 )  + 6X - to the system of equations, we 

will find that the Hamiltonian is exactly equal to zero. 

we integrate the system of equations, we will find that the terminal values 

a re  slightly off. 

by (4.41, and even if it were, the 6X - given by (4.7) would not exactly com- 

pensate for the 6x(T) - in one step. Thus we must again apply the fixed 

time algorithm to exactly solve the two-point boundary problem for the 

However, when 

This is due to the fact that 6x(T) - is not given exactly 

n+l  n n+l new T = T + 6T. This will result in a - q5 ( 0 ) ’  which is not exactly 

equal to - qb 

exactly zero. However, the @ (0)l  determined by the fixed time 

algorithm for the T will be close enough to @ (0) that the 

Hamiltonian will be closer to zero than it was for the T 

process can be repeated until the T is found which does result in H = 0, 

o r  at least as  close to zero a s  we please. 

n+l n 
( 0 )  = - @ ( 0 )  + 6X - and thus the Hamiltonian will not be 

n+l 

n+l n+l 

n Thus, this 

4.3 Numerical Example 

6 
The problem to be solved is given by the differential equations: 

k = x  

k = ( l -x  )x -x + u  

1 2  
2 

2 1 2  1 (4.10) 
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with boundary conditions 

x (T) = -0.97 

x (T) = -0.96 

1 

2 

x+O) = 1.0 

X2(O) = 0.0  

0 

The performance criterion to be minimized was 

J(u) = c ( x :  + xi + u 2 )  dt 

The Hamiltonian for the system is thus given by 

H = Q x + r&2 [ (1 - xf)x2-x1 + u] - x 2 2 2  - x - u 
1 2  1 2  

(4.11) 

(4.12) 

(4. 13) 

If we set  aH/au = 0 and solve for u, we obtain 

U opt - - @212 (4.14) 

If we have bounds on u of the form 

U 1 u < u  
min max (4. 15) 

we can see from (4.13) that if u 

u, then the Hamiltonian is maximized for admissible u if  u is at i ts  con- 

straint. That is, if u 

given by (4.15) is outside the bounds on 
OPt 

and if fi - ( u  2 / 2  min’ = u  max ’ fi2/2’ Uopt max’ 
U = u  opt min’ 

The adjoint equations a re  given by 

- 2x x fi +2x1++2 + l = - a x -  1 2 2  1 

2 
2 aH - -Q -Q ( l - X J  + 2x + 2 = - a x z -  1 2  

(4.16) 
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We wil l  first solve the problem for unbounded control and then 

proceed on to the bounded control problem. 

We have now reduced the problem to the two-point boundary 

problem and we can employ quasilinearization to solve this problem. 

After solving the problem for a given fixed t ime T, we employ the 

technique of the preceding section to calculate a 6T to give us a new 

estimate T f 6T. The equations for applying this technique a r e  derived 

below. 

From Equation (4.7), for a two-dimensional problem 

.;. 
(4.17) 

We of course must integrate Equations (4. 5) to obtain the ax. /ax . 
1 j R1 

and R a r e  given by 
2 
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where : 

. .. 

. -_ 
The Hamiltonian for our example, from (4.13), with u = @ ‘/2 

2 - 
substituted for  unbounded control, is given by 

- X  2 2 2  - X  -102/4 
1 2  (4.20) 

Since H($’,x) is constant fo r  all  t, we need only insure that our 

H($ + 6$, x) = 0 at t = O .  

x2(0) = 0, and $’ (0) = X 
Substituting the initial conditions x (0) = 1.0, 1 

2 2 

(4.21) 2 H(X) = X2/4 - X - 1 2 

Therefore 
2 

2 2 

H(X -F 6X) (A2+ 6 X 2 )  / 4  -(A2+ 6X ) - 1 
(X2-2)  

2 

= X 2 / 4  - X2 - 1 + 6 X 2 / 4  + 2 X 2  

2 (X2-2) 

6 X 2  = H(X) + 6X2/4 + (4.22) 

where H(X) and X a r e  also available in computer storage after solution 2 
of the fixed time problem. Thus, substituting 6h = R 

and setting H(k + 6X) = H(6T) = 0 

6T from (32);  
2 2 -  

(X2-2) 
R2dT + H(X) = 0 

2 . .  
2 

6T + -- 
4 

(4.23) 

This equation may be solved fo r  6T, and thus T + 6T is our new 

estimate for the optimal final time. If (4.22) has no rea l  solution, we use 

the 6T that minimizes (4.22); i f  it has two rea l  solutions, we choose the 

smaller, for which this approximations made hold more accurately. 
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For  bounded control, if the control fo r  the fixed t ime case is at 

its bound at t = 0, H(X + 6X) of (4.21) becomes 

H(X -I- bX) = H(X) - bX2(1-u)  

= H(X) - R2(1-u)6T 

and we use 

(4.24) 

(4.25) 

4.4 Discussion of Numerical Results 

Figure 4 . 1  and Table 4. 1 give the values of the Hamiltonian and the 

minimized performance criterion, S(T), f o r  various values of fixed 

final time for unbounded control. 

table, the Hamiltonian goes through zero at T 

As ca; be seen from the figure and 

2 .6  seconds, at which 

time S(T) goes through a minimum. 

time optimum. 

This point is the desired variable 

However, the Hamiltonian also goes through zero at 

T %' 6 . 1  seconds, at which time S(T) attains a local maximum. 

at T = 9. 3 seconds, H = 0. 

minimum at this point, but this is due to accumulated integration e r r o r s  

for large T ' s  and the fact that S(T) is only varying in the fourth decimal 

place. 

than that attained at T = 2 .6  seconds). 

continue to oscillate with decreasingly small  amplitudes about H = 0, 

and S(T) would continue to achieve relative maxima and minima, but with 

increasingly small  difference between them. 

Again, 

According to the table, S(T) is not a local 
* 

S(T) should be a local minimum here (although a greater minimum 

For  higher TIS, H would probably 
- .  

Any technique for solving the variable time problem which uses 

only the H = 0 criterion could arrive at any of the various H = 0 points, 

some being local maxima. F o r  example, using the technique outlined in 
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TABLE 4.1 

T (see) 

2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4. 8 
5.0 
5.2 
5.4 
5.6 
5. 8 
6.0 
6.2 
6 . 4  
6.6 
6.8 
7.0 
7.2 
7 . 4  
7.6 
7.8 
8.0 
8. 2 
8. 4 
8.6 
8. 8 
9.0 
9.2 
9.4 
9.6 
9. 8 

10.0 

H 

2.8466 
1,3928 
0.5522 
0.0569 

-0. 2338 
-0.3974 
-0.4792 
-0. 5067 
-0.4981 
-0.46 59 
-0.4194 
-0. 3654 
-0. 3088 
-0.2533 
-0. 2013 
-0.1544 
-0.1134 
-0.0786 
-0.0498 
-0.0269 
-0.0090 
0.0041 
0.0135 
0.0195 
0.0229 
0.0243 
0.0240 
0.0227 
0.0207 
0.0184 
0.0156 
0.0131 
0.0104 
0.0080 
0.0059 
0.0025 
0.0010 

-0.0004 
-0.0013 
-0.0019 
-0.0033 

S(T) 
4.0320 
3.6217 
3.4347 
3.3780 
3.3981 
3.4627 
3.5512 
3.6502 
3.7510 
3.8475 
3.9360 
4.0144 
4.0816 
4.1376 
4.1828 
4.2181 
4.2447 
4.2636 
4.2762 
4.2837 
4.2871 
4.2874 
4.2855 
4.2821 
4.2777 
4.2729 
4.2679 
4.2631 
4.2587 
4.2547 
4.2512 
4.2482 
4.2458 
4.2439 
4.2423 
4.2358 
4.2350 
4.2345 
4.2343 
4.2343 
4.2339 
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MINIMIZED CRITERIA FUNCTIONS 
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preceding sections, i€ the initial guess on T was less than 3.4 seconds 

(the point where H achieves its first extremum), the variable time 

solution obtained will be the correct one of T = 2.6 seconds. 

i f  the initial guess on T is greater th.an 3.4 seconds (but less than seven 

seconds) the solution obtained will  be the local maximum at T 

seconds. 

that all  those methods given in the literature for solving the variable time 

problem which use only the H = 0 condition a r e  inadequate for the general 

problem. 

However, 

6 .1  

This demonstrates the contention made earlier in this paper 

Using quasilinearization, and starting at T = 3.2 seconds, the 

variable time algorithm arrived at the solution T = 2.6  seconds after 

iterating through T = 2.0 and 2.4 seconds (or three total iterations on T). 

The variable time optimal trajectories for T = 2 . 6  seconds a re  shown 

in Figure 4.2. The first iteration overshot the desired T because the initial 

guess of T = 3 , 2  was near the extremum of H where H was varying 

slowly with respect to T, and thus the method computed a 6T to drive H 

to zero which was too large. 

work in regions where 

the allowed 6T(say, 6T max = T/3). 

Thus, in order to make the technique 

aH/aT e 0, an upper bound should be placed on 

4. 5 Development of Sufficient Conditions for a Local Minimum 

In the preceding section we showed that the H = 0 condition for a 

variable time optimum can sometimes lead to an incorrect solution. 

That is, computational algorithms based only upon the H = 0 condition 

can result in a solution which is a local maximum of S(T) with respect 

to T a s  well as  a local minimum, since H = - - as In the standard mini- 

mization problem, a sufficient condition for a local minimum is that the 

second derivative of the function to be minimized be greater than zero. 

Since H = - - as 

aT 

for  o u r  problem this sufficient condition is given by: aT a 
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aH > 0 a s / a T  = - - 2 2 
aT 

or 

= < 0  
aT (4.26) 

Since the Hamiltonian is constant with t ime for  the solution for 

a given final t ime T, aH/aT will be the same regardless of at what time 

it is evaluated. For convenience we will evaluate it at time t = 0. 

Since H = H(@, x, u) 

1 (4.27) 

If we t = 0, ax/aT = 0 since the initial condition 

= [*] a+ (" aT 1 (where the te rm 
aT is constant, and 

Thus 

. where rl/ = X has beer, substituted since we a r e  evaluating at t = 0. 

From (4.7) 

63 = - [Y]-l 3 k(T) 6T 

o r  
6& -1 - - [ Y ]  2(T) 
6T 

But 

Therefore 

(4.28) 

(4. 29) 

(4.30) 

(4.31) 

Substituting (4. 31) into (4.28) 
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(4.32) 

In (4.32) all the variables on the right side of the equation may 

easily be evaluated for  an optimal solution f o r  variable final time ob- 

tained using the method of the previous chapter which uses only the H = 0 

necessary condition. If < 0, we have a local minimum; if !%- > 0 aT 
we have a local maximum. 

We can also derive a computational algorithm for insuring that this 

sufficient condition is satisfied. If we follow the procedures developed 

earlier in this chapter, but include second order  terns  6T 2 is all approxi- 
2 2 mation, we can obtain an expression for  a H/BT . Details of this develop- 

2 2 ment a r e  given in Reference 4.7. Knowing a H/BT , we know which way 

to vary T to make BH/BT < 0 if B H / B T  > 0 for our first estimate 

That is, we can take 
aH/aT 6T = - KT 
a2H/aT2 

on T, 

(4 .33)  

where the value of K 

desired to  drive T to  insure convergence to a point where BH/BT < 0 (K 

should be at least two.) Of course, this method will only insure we have a 

local minimum and not a local maximum. 

must search for the absolute minimum. 

depends on how far  into the aH/BT < 0 region it is T 

T 

If several local minima exist, we 

When this method was applied to the numerical example with 

an initial estimate of T = 4.6 seconds, the method converged to T = 2 . 6  

seconds in  steps of T = 4.6, 3.05, 2.2, 2.45, and 2.6 seconds, with 

%= 2.0 used for  this run. 

T into the region where 

to the local minimum at T = 2.6  seconds., 

H = 0 criterion, any initial estimate of T greater than 3.4 seconds would 

converge to the local maximum of S(T) at T = 6 . 1  seconds. 

The first iteration, as expected, drove 

aH/aT < 0, and from there the method converged 

In the method using only the 

When an initial estimate of T = 5.2 seconds was used (after 
2 2 a H/BT changes sign) the method converged to T = 9.3 seconds in steps 
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of 5.2, 7.8, 9.0, and 9 . 3  seconds. When only the H = 0 condition was 

used, the solution at T = 6.1  seconds was arrived at starting from T = 5.2 

seconds. 

(although Table 4 .2  does not show this, due to integration errors) ,  but not 

the least local minimum, which is at T = 2.6 seconds. 

The solution at T = 9.3 seconds is a local minimum of S(T) 

For the bounded control case, it was found that the most efficient 

way of solving the variable time problem was first to solve it for un- 

bounded control and use the optimal final time T for unbounded control 

for the first estimate on T for the variable time optimal bounded 

problem, 

If the bounded problem is solved in this manner, with bounds of 

f 0.5, we obtain the variable time optimal solution at T = 2.525 seconds 

shown in Figure 4.4. 

bounded, the variable t ime optimal T is not too fa r  from the value of 

T = 2 - 6  seconds for the unbounded case, 

A s  can be seen, even though the control is well 
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5. THE VARJABLE END POINT PROBLEM IN 
AEROSPACE VEHICLE TRAJECTORIES 

5. 1 Statement of the Problem 

In the last section we considered the problem for which the terminal 

condition x(T) was some fixed constant vector {x (t), x2(T), . . . xn(T)} in 

the n-dimensional Euclidean space E We will now consider problems in n' 
which the terminal vector - x(T) is merely constrained to lie in some (n-k)- 

dimensional manifold M of E Such a manifold is defined as the set  of all 

points x = (xl, x2. . . , x ] which satisfy simultaneously the k equations 

1 - 

n' 

n - 

and where the vectors 

grad hl(X)J grad h2(x), . . . grad %(x) (5. 2) 

a r e  linearly independent, where 

ax n 
,..a 

ah ah grad h(x) =I- - 
tax, ax2 

( 5 . 3 )  

Pontryagin'. gives a necessary condition for the optimal control 

problem with fixed initial conditions and terminal condition constrained 

by x(T) EM. 
point - x. 

necessary condition for this problem, inown as the transversality condition, 

Let V be the tangent plane to the manifold M at a given 

This tangent plane has dimension (n-k). The desired additional 

is that for  x(t) to be optimal, the terminal adjoint vector - $(T) must be 

orthogonal to very vector - 8 V, i. e. , 
T - fi (T) .  - 6 = 0  ( 5 . 4 )  

for all - 8 E V .  
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Since V is (n-k)-dimensional, (5.4) yields (n-k) independent rela- 

tionships, which, along with the k equations (5.1) give sufficient relation- 

ships to solve the problem. 

Let us  consider S(T,X) as defined in the prefious chapter. 

variable end point problem is to determine the minimum of S(T, X) over 

all - X satisfying (5.1). 

The 

We will now derive the transversality condition by showing the 

equivalence between this condition and the condition that the first variation 

of S(T, X) with respect to - X is zero, i. e. , 

T 
as 0 6 X =  0 - 6S= - ax (5. 5) 

which is a necessary condition for  S to be a minimum with respect to - X. 
as - is an n-dimensional vector with elements aS/aX. and bX is the n- ax 1 - 

dimensional variation in  - X such that X + 6X - is also consistent with (5.1). 

5.7,5.9 A standard result from optimal control theory is. 

as 
ax - - = $(TI 

Thus, (5.5) becomes 

However, we have stated that 6X must be consistent with (5. 1) 

i. e . ,  to a first  order approximation 

6 X = O  

where 

m 

,(5. 6) 

(5.7) 
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But the vectors {8hi/8x) are directed along the normals to the 

respective curves h.(x) = 0, and thus the 6X - satisfying (5. 8) a r e  tangent 

to the respective curves h.(x) = 0. 

tangent to all the curves h.(x) = 0, and thus to the manifold M. Thus the 

6X - in ( 5 . 7 )  are equivalent to the - 9 in (5.4) (when bX - goes to zero so  that 

( 5 . 8 )  become exact), demonstrating the equivalence between the transversa- 

lity condition (5.4) and the condition bS = 0 of (5. 5). Thus, the transversa- 

lity condition for variable end point optimum is a necessary condition which 

holds for  a variable end point maximum of S(T,X) as well as a minimum 

of S(T,X). Thus, i f  we u s e  only this necessary condition, we can obtain a 

variable end point maximum as well as a minimum. Before commenting 

further on this, let u s  develop a computational algorithm using the trans- 

versality condition, 

1 
Thus the 6X - satisfying all of (5. 8 )  are 

1 

1 

5. 2 Computational Algorithm 

We want to s ta r t  with an initial estimate of - X satisfying (5. l), 

solve the fixed end point problem a s  discussed ear l ier  and then obtain a 

new estimate - X + d X  - so as to drive the condition (5 .  4) to zero. 

We know that (5.4)  gives u s  r = n - k independent equations in the 

. . . x  @l(T), r,!j2(T), . . . @  (T). Let the r equations be 1’ x2’ n’ n 2nd variables x 

given by 

M1(X, $(TI)= 0 

Mr(X, KO)= 0 

th  Let u s  assume that our j estimate yields 

M! 1 (Xj, $(T))= a !  1 

We want to compute AX’+’ - so that 

+ 6x j j  ,$ (TI + blj/j(~)) = o 

(5.10) 

(5.11) 
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at least to a first order  of approximation. 

from the previous trajectory, we have 2n unknowns 

b X 1 ,  6X2,. . . 6Xn, 6 +l(T), 6Q2(T), . . . 6 +  n (TI. 

Since Xj and $(T) are known - - 

And letting again, using (4.5), 

Y. .  = a d a x  I and wij = 
1J j t=T  

we can write that, to a first order  of approximation, the variations in - X 

and - $(T) due to variations in - h a r e  given by 

(5.12) 

If we combine Equations (5.12) we can obtain a relationship between 

bQ(T) - and bX: - 

6&(T) = [Wl [YI-' (5. 13) 

Substituting (5. 13) into (5.11) for  6$(T), - we reduce the number of unknowns 

in (5. 11) from 2n to n .  Also, the k Equations (5. 8) can be used to 

eliminate k of the 6X.'s, thus reducing the number of unknowns in (5. 11) 

to r = n - k, which is equal to the number of equations. 

solved for (n-k) of the n 6Xits, giving (n-k) of the desired X 

The k Equations (5. 1) can then be solved for  the remaining kX?l+lts , thus 

insuring that - X EM. Although, due to the f i rs t  order approximations 
j + l  made, the m (X, $(TI) wil l  not exactly equal zero, they will be closer to i 

zero than the previous mJ (X, $(TI), and thus eventually the method will con- 

verge so  that the m (X,$(T))are a s  close to zero a s  we please. This tech- 

nique will be illustrated in the next section by a numerical example. 

1 
Thus (5. 11) can be 

j + l  j =Xi+6Xi. i 

j + l  

i 

i 

5. 3 Numerical Example 

We will u s e  the same numerical example of the previous chapter, 

with terminal conditions constrained by 

(5. 14) 2 2 
1 x + x 2 = o . 5  

and with fixed f inal  time T = 5.0  seconds and unbounded control. 
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The fixed end point problem for an initial estimate of X may be - 
solved using quasilinearization. 

by the following. 

A new estimate X + 6X may be obtained - - 

For the circle given by (5. 141, the slope of the line drawn from the 

and the slope of the per-  origin to a given point (X , X  ) is equal to X /X 

pendicular to this line, which is also tangent to the circle, is equal to 

-X1/X2. 

by (1, -X /X ), or  alternately, by (-X2,X1). 

1 2  2 1' 

Thus the vector tangent to the circle at the given point is given 

1 2  
From the transversality condition, we know that for u(t) to be op- 

timal for  the variable end point problem, @ = (rc/ 
to this tangent at the final t ime t = T, that is, 

@ ) must be perpendicular 1' 2 - 

(rc/l(T), e2(T)) - (-X2, X1) = - +,(T)- X2 + 'I/2(T) - X1 = 0 (5.15) 

Thus, we have n-k = 2 - 1 = 1 additional equation, which along with 

(5. 14), is sufficient to solve the problem. 

If we s ta r t  with some initial estimate of the terminal conditions 

(X,,X2) consistent with (5. 14) and solve the fixed end point problem, 

(5.15) will be equal to some value probably not equal to zero. 

perturb - Xn by some 6X - to get some - X 

We want to 
n+l 

= - Xn + 6X - so  that (5.15) is 

equal to zero to a f i r s t  order  of approximation. Thus, we want 

-($p 6$2)(x2+ 6X2) + (@2 W2)(X1+ ax,) = 0 

From (5.13) we know that 

(5. 16)  

ax2/ax1 ax 

ax, /ax, ax, / ax  

2 

(5. 17)  

where, i f  we multiply out the matrices 
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- )/ ax , - . . -  
Kll - (ax, axl axl  ax, det lax 

where 

Also, f r o m  (5. 14) and (5. 81, to a f i r s t  o r d e r  of approximation, we 

have 

X1 6Xlf X2 6X2 = 0 (5. 19) 

Solving (5. 19) f o r  6X substituting into (5. 16) and (5. I?), and 1' 
then substituting (5. 17) into (5. 16) f o r  6rC/ and 6rC/ we obtain 1 2 

Collecting t e r m s  involving 6X and constants, and neglecting 
2 1 

t e r m s  involving 6X since they a r e  inaccurate anyway, we have an  equa- 
l 

tion of the fo rm 



where 

x1 x1 

x2 
A = $ - - X2(Kl1- K 2) + 92+x1 (KZ1- K22) 2 1 2  x2 

x2@1 + x192 
B = -  

Thus 

Also, we have 

6X1 = - B / A  

x1 
6x1 6X2 = - - 

x2 

(5.22) 

(5.23) 

(5. 24) 

However, we cannot u s e  both of these 6Xi, since then (5.14) 
n-t-1- would not be satisfied exactly for  - X 

smaller of the 6X 

(5. 14) for  the other Xi 

satisfying (5. 14). 

condition is as close to zero as we desire. 

- - Xn+ 6X. - Thus, if we take the 

and let Xi n+l = Xn+ 6X. for  that i , and then solve 
1 n+l 1 n+l i’ 

, we will have our new estimate of - X 
We continue with this procedure until the transversality 

Numerical Results 

Figure 5. 1 gives a polar graph of the minimized criterion function 

S = S(T, X) as a function of the end point - X for  a fixed final time T = 5 

seconds. On this graph, S is plotted on lines radially outward from the 

origin with the S for  a given - X being plotted on the radial line through 

the given point on the X + X = 0. 5 circle in  the X -X plane. The points 
2 2 
1 2 1 2  

on the circle where the transversality condition is zero are indicated by the 

radial lines marked TC = 0. 

point where the transversality condition is zero in each of the four quadrants, 

with two points corresponding to local maxima and two to local minima. The 

local maxima occur in the second and fourth quadrants at - X = (-0. 64, 0.30) 

and (0. 62, -0. 35) with S = 3. 51 and 3. 85, respectively. 

occur in  the first and third quadrants at - X = (0. 19,O. 68) and (-0. 38, -0. 60) 

with S = 3.08 and 3. 14, respectively. 

A s  can be seen from this graph, there is a 

The local minima 

Which of these extrema is obtained 

5 -7 



S 
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depends upon the first estimate of X used. 

the intersection of the circle with the 45 

L e . ,  at - X = (90. 50, fO. 50), and in  each case the method converged to the 

extremum in the corresponding quadrant, e. g. , an initial estimate of 

( +  0. 5, + 0. 5) converged to the extremum at (0. 19, 0. 68). 

Initial estimates were used at 

line in  each of the four quadrants, 0 

5.4 Sufficient Conditions for  a Local Minimum 

If S(T,X) is at an extremum with respect to X, a sufficient con- 

dition fo r  the extremum to be a minimum is that the second variation 

6 S of S with respect to X be greater than zero. If 65 = {8S/8X}T* 6X=O, - 2 
CY 

then the condition dcjS > 0 is given by 

2 T 2 
6 s = 6 5  [ a  s/ax21 6X> - 0 (5.25) 

2 2 2 
where [ a  S/aX ] is an nxn matrix with elements a S/aX.aX . In 

1 3  
(5.25), all the perturbations 6X. must be consistent with the constraints 

on - X ,  i. e. , must satisfy Equations (5. 8). 

between the 6Xi’ we may u s e  (5. 8) to eliminate k of the 6Xi in (5. 25) 

and thus we can reduce (5. 25) to a relation consisting of (n-k)-dimensional 

vectors and a (n-k)X (n-k) matrix. 

the condition that the resulting (n-k)X (n-k) matrix is positive definite. 

1 
Since (5. 8) give us k relations 

Condition (5. 25) is thus equivalent to 

We now need a method of computing the aS/aX.aX . From 
1 3  

The ref o re  

We also know that 

(5. 26) 

(5 .  27) 

(5. 28) 
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Comparing (5. 28) with (5.13), we see that 

[ ~ ]  = [W] [Yl-l (5. 29) 

where the [W] and [Y] are defined as in (5.12). 

information we need to compute 6 S and thus to apply the sufficient condi- 

tion (5.25). 

Thus this gives u s  all the 
2 

Let u s  illustrate this technique by applying it to our numerical 

example. From (5. 29) 

= K. ax Ij j 
i , j  = 1 , 2  (5.30) 

where the K.. a r e  defined in (5.18). 
TI 

(5.25) becomes 

Thus for  our two-dimensional problem, 

o r  

But, 

Thus 

2 K116X; + 6X1 6X2(K12+K21) + K22 6X2 > 0 

from the constraint Equation (5.  19) 

- x2 6X1 - - - 6X2 x, I 
(5.32) becomes 

2 

L 

c 

> o  

Thus the sufficient condition for a local minimum is that 

(5.32) 

(5.33) 

5.34) 

(5.35) 
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However, this condition wil l  not insure that we have an absolute 

Thus this condition will minimum, only that we have a local minimum. 

not distinguish between the minima of the first and third quadrants of 

Figure 5. 1. 

5.5 Moving End Point Problem 

In this section we will consider the class of problems in which end 

An example of this problem is that 

This prob- 

point is moving as a function of time. 

of reaching a point fixed on the surface of the rotating earth. 

lem is neither a simple variable time problem, since the end point is 

varying, nor is it a variable time, variable end point problem in which 

the variations in final time and end point are independent and the H = 0 

condition and the transversality condition can both be satisfied simultan- 

eously. 

s a ry  condition containing both the variations due to final t ime and end 

point. 

is given by 

For the moving end point problem, we must derive a single neces- 

The f i rs t  order  variation in S(T,X) for  a variation in both T and - X 

T 
6s = - H6T + 1%) bX - (5 .36 )  

since H = - aS/aT (a standard result from the Hamilton-Jacobi equa- 

tion) .5' 7s 5'  

represent this dependence by - -  X = X(T). (Note that - X(T) is a vector which 

is a function of T rather  than a vector evaluated at  t=T. ) Therefore, the 

variation 6X - is given by 

The end point X - depends explicitly on the final time T. Let us 

where {dX/dT) is an n-dimensional vector with components dX.(T) /dT. 

Substituting (5.37) into (5. 36) 
1 

( 5 . 3 7 )  

( 5 . 3 8 )  
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Dividing by 6T and letting 6T * 0 

The desired necessary for  the moving end point problem is thus 

given by 

(5.39) 

(5.40) 

This problem now becomes one of deterrning the value of final 

time T which drives (5.40) to zero. 

In Section 4 a technique was developed for  evaluating H at final 

time T + 6T given a value for H at final time T .  

u s e  of a relationship giving the variation in - X caused by a variation ih T . 
-1 This equation is given by 6X - = - [Y] For the moving end point 

problem, this becomes 

This technique made 

- k(T) 6T. 

6 - X = - [Y]-' (g(T) - (dX/dT)) 6T (5.41) 

since the desired change in I X is now - (k(T) - - (dX/dT}) 6T. Thus, since 

H is a constant function of t for  a given T , H evaluated at  t = O  is the same 

as H evaluated at t=T, and H evaluated at T t 6T may be obtained by 

taking H(X - + 6 X )  - and substituting (5. 41) f o r  6X. - 

The relationship for the second term of (5.40) evaluated at T + 6T 

is given by 

(5.42) 



2 2 
where [a S/aX 1 and (aS/aX} are the same as given in (5.26) and (5.27), 

respectively. 

H at T + 6T, and setting it equal to zero as in (5. 40), we get an  equation 

which can be solved for the single unknown 6TJ  which will drive (5.40) 

closer to zero. 

f rom - -  X = X(T -+ 6T), o u r  given function for the moving end point. 

Combining this relationship with that for the estimate of 

At  each iteration we obtain the new value of the end point 

We will apply this technique to the same problem considered earlier 

in this chapter, with the initial condition - x(0) = (1, O), and the terminal 
2 2  condition moving around the circle x t x2 = 0. 5 at a constant counter- 

clockwise angular velocity starting at  the point (0. 5, 0). 

condition - X(T) is given by 

Thus the terminal 

where w is the constant angular velocity. 

The various derivatives of - X(T) with respect to T needed in 

(5.42) are given by 

-0. 5 w X2(T) dxl kl = { 0.5  W Xl(T) ~ 

-0. 5 W 2 X1(T) 

-0. 5 W 2 X2(T) 

(5.43) 

(5.44) 
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2 2 The (aS/aX] and [a  S/aX ] a r e  the same as those given in Section 5.4: 

[ ~ ]  = [KI 
(5.45) 

where the K.. are defined in (5. 18). 
1J 

If we let the equation for  (5 .39 )  evaluated at  T +bT be given by 
2 A 6T + B 6T + C = 0, the values of A, B, and C for our numerical example 

are given by 

-. 5 W X2(T) 

(5. 46) R' , + ~ l ' T ) ~  [ . 5  w X1(Tj  

B = -  
2 

2 

-. 5 w X2(T) -. 5 LI X2(T) 

+ 1 - 5  w X l ( T ~  ~~~ ::i [ . 5  w Xl(TJ) 

where R r  is the same a s  that given in (4.18) with B (T) and k2(T) being 

replaced by xl(T) f 0. 5 w kZ(T) and k2(T) - 0. 5 w k (T), respectively. A l l  

the other terms in  (5.46) a r e  evaluated at final time T for the previous 

iteration and a r e  available in computer storage. 

A 6T + B 6T + C = 0 canbe solved for 6T. 

2 1 

1 

Thus the equation. 
2 

The value of w used was such a s  to require 20 seconds for the end 

point to move completely around the circle, i. e . ,  w = 2n/20. Starting 

from an initial estimate of T = three seconds, the method converged in 

three iterations to a local minimum at T = 4, 75 seconds, - X=(O. 036,O. 499), 
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with S = 2.975. 

two iterations to a local maximum at T = 8. 4 seconds, - X = (-0. 438,O. 241), 

with S=3.271. 

iterations to a local minimum at T = 13. 5 seconds, - X = (-0. 216, -0.451), 

with S = 2. 992. Note that in this case, there is very little difference be- 

tween the two local minima. 

local maxima and minima a s  T continues to increase. 

Starting from T = 6.5 seconds, the method converged in 

Starting from T=12 seconds, the method converged in 3 

It is likely that S would continue to go through 

Sufficient conditions for a local minimum may be developed by dif- 

ferentiating (5. 39) with respect to T 

A relationship for dH/dT may be obtained from (4. 32) by replacing 

- %(T) by - k(T) - {dXIdT) 

(5.47) 

A l l  other expressions in  (5. 46) have already been evaluated. 

condition f o r  a local minimum then is that d S/dT > 0. 

The sufficient 
2 2 

. 
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