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Abstract Many optimization and coordination meth-
ods for multidisciplinary design optimization (MDO)
have been proposed in the last three decades. Suitable
MDO benchmark problems for testing and comparing
these methods are few however. This article presents
a new MDO benchmark problem based on the design
optimization of an ADXL150 type lateral capacitive
micro-accelerometer. The behavioral models describe
structural and dynamic effects, as well as electrosta-
tic and amplification circuit contributions. Models for
important performance indicators such as sensitivity,
range, noise, and footprint area are presented. Geo-
metric and functional constraints are included in these
models to enforce proper functioning of the device. The
developed models are analytical, and therefore highly
suitable for benchmark and educational purposes. Four
different problem decompositions are suggested for
four design cases, each of which can be used for testing
MDO coordination algorithms. As a reference, results
for an all-in-one implementation, and a number of aug-
mented Lagrangian coordination algorithms are given.
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1 Introduction

Multidisciplinary design optimization (MDO) prob-
lems are encountered in the design of engineering
systems that incorporate a number of interacting dis-
ciplines. Each discipline typically represents a design
team concerned with the design of one aspect or com-
ponent of the complete system. We use the word dis-
cipline to denote the smallest decision-making element
within a system, being either a discipline in the classic
MDO sense, or a component of an object-based decom-
position. The goal of MDO coordination algorithms
is to drive the individual disciplines towards a system
design that is optimal as a whole, while maintaining
some degree of design autonomy at the discipline level.

In general, MDO coordination algorithms can
be divided into two classes: single-level and multi-
level methods (Balling and Sobieszczanski-Sobieski
1996). Single-level methods have a centralized optimi-
zation algorithm while the analyses can be performed
autonomously by the disciplines. Single-level methods
allow analysis autonomy, but decision-making is cen-
tralized. The review of Cramer et al. (1994) presents an
overview of single-level formulations including multi-
disciplinary feasible (MDF), individual discipline feasi-
ble (IDF), and all-at-once (AAO).

For multi-level methods, design optimization is dis-
tributed over the various disciplines. Each discipline
is granted a degree of design freedom, and a coordi-
nation algorithm is superimposed to address the in-
teractions between the disciplinary design problems.
Well-known multi-level formulations include collab-
orative optimization (Braun 1996), analytical target
cascading (Michelena et al. 1999), bi-level integrated
system synthesis (Sobieszczanski-Sobieski et al. 2003),
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the quasiseparable decomposition method (Haftka
and Watson 2005), the inexact penalty decomposition
method (DeMiguel and Murray 2006), and augmented
Lagrangian coordination (Tosserams et al. 2008).

Determining which coordination methods are most
suitable for solving a given problem, or determining the
properties of a newly proposed method, requires a com-
parison of both the theoretical and numerical aspects.
A number of theoretical classifications are available
from the engineering literature (Cramer et al. 1994;
Balling and Sobieszczanski-Sobieski 1996; Alexandrov
and Lewis 1999; Tosserams et al. 2009b), which focus
on coordination algorithms (single-level vs. multi-level,
nested vs. alternating), and the formulation of the asso-
ciated optimization problems (MDF vs. IDF vs. AAO,
open constraints vs. closed constraints).

Numerical comparison studies of coordination meth-
ods are available (Balling and Wilkinson 1997; Perez
et al. 2004; Yi et al. 2008), but comparing and extrap-
olating their findings is very difficult for a number of
reasons. Firstly, no unified collection of test problems
is used. An effort to filling this void are the examples
from the NASA MDO group (Padula et al. 1996),
currently maintained by the group of prof. Bloebaum
(University of Buffalo 2009). Second, reproducing re-
alistic test problems may be hindered due to the un-
availability of analysis models and/or implementation
details. This is e.g. the case for the portal frame ex-
ample of Sobieszczanski-Sobieski et al. (1983) and the
supersonic business jet case (Agte et al. 1999). Third,
test problems that can be reproduced are typically of an
academic nature making extrapolation of their results
to more practical design problems difficult. In general,
a larger suite of representative and reproducible bench-
mark problems is necessary for test and comparison of
coordination methods.

This article presents a new benchmark problem that
can be used for test purposes in the context of coor-
dination algorithms for decomposition-based optimal
design. Although the analysis models are analytical, the
design problem is representative since it captures the
major considerations relevant and results in realistic
designs. The Matlab analysis models are made publicly
available at http://se.wtb.tue.nl/sewiki/mdo to assure
the reproducibility and the comparability of results.

The benchmark problem deals with finding relevant
parameters for a lateral capacitive micro-accelerometer
used in e.g. airbag systems to detect decelerations in
case of a collision. The design problem is based on the
ADXL150 accelerometer of Analog Devices (Samuels
1996; Analog Devices Inc. 1998). Analysis models are
presented for design aspects of mechanics, electrostat-
ics, dynamics, and electronics. Most analysis models are

derived from existing literature such as Zhou (1998);
Mukherjee et al. (1999); Senturia (2001). The models
are analytical and reproducible, and can therefore eas-
ily be used for benchmarking of optimization methods.
More accurate numerical analysis routines often have
the drawback of introducing numerical noise (e.g. due
to the finite accuracy of finite element models), an
aspect that may complicate the optimization process.
Although the models are analytical, they reflect the
important design considerations and are representa-
tive of the interactions present between the various
disciplines.

Four design cases are developed, all of which are
non-convex optimization problems. The smallest case
has seven variables, and the largest has 22 variables
of which two are of a discrete nature. Numerical ex-
periments with an all-in-one implementation were per-
formed to obtain benchmark solutions for each case.
Four problem decompositions are presented that can
be used for testing MDO coordination methods. Refer-
ence computational results are presented as well, gener-
ated using algorithms from the augmented Lagrangian
class of coordination algorithms.

The benchmark problem was solved with an actual
distributed optimization approach, thereby demon-
strating that coordination methods can be used for the
multidisciplinary design of microsystems. Single-level
optimization of microsystem devices has been applied
to microaccelerometers (Pedersen and Seshia 2004),
microgyroscopes (Yuan et al. 2006), microresonators
(Mukherjee et al. 1998), and microphones (Papila et al.
2006). These applications have focussed on the electro-
mechanical optimization of material layout. Inclusion
of conditioning circuit details, multiple physics, and
manufacturing considerations is not straightforward,
and a systematic, multi-level approach is desired ac-
cording to Senturia (2001); Mukherjee (2003); Leondes
(2006). MDO coordination methods have originally
been developed to address similar challenges in the
macro world, and may therefore also be useful in the
context of multidisciplinary microsystem design.

2 Micro-accelerometer

We consider a lateral capacitive micro-accelerometer,
similar to the ADXL150 device from Analog De-
vices (Samuels 1996; Analog Devices Inc. 1998). These
micro-accelerometers are for example used in airbag
systems. A schematic layout of the mechanical sensing
element of the accelerometer is depicted in Fig. 1. The
device consists of a proof mass suspended by two U-
springs on each side. The U-springs are only connected
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(a) Scanning electron microscope image of suspended proof mass.
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(b) Schematic illustration of the sensing mechanism (top
view). Similarly shaded fingers are connected in parallel such
that the total capacitance is equal to the sum of the contribu-
tions of each cell.
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Fig. 1 ADXL accelerometer of Analog Devices (Samuels 1996; Analog Devices Inc. 1998). The suspended proof with comb fingers
takes up an area of about 600 μm × 700 μm = 0.42 mm2

to the substrate at the two anchor points. A number of
cantilever electrodes, called rotor fingers, are attached
to the proof mass. In each sense unit, a rotor finger is
positioned between two stator fingers, thereby forming
a differential capacitor. The force feedback region has a
similar arrangement of electrodes, but here an external
voltage can be applied to introduce an electrostatic
force that displaces the proof mass for self-test pur-
poses.

When the device is exposed to an external accelera-
tion in the sense direction, the proof mass deflects the
U-springs due to inertial forces and moves relative to
the substrate. The U-springs are typically flexible in one
direction (the sense direction), and much stiffer in the
other directions. The rotor electrodes follow the dis-
placement of the proof mass, and cause a change in the
capacitance of the sense units. This capacitance change
generates a voltage, which is amplified and conditioned
by the conditioning circuit.

At the two ends of the proof mass, four limit stops
and two stopping blocks are used to limit the displace-
ments of the proof mass in the x and y directions so that
the rotor and stator fingers do not come into contact.
Contact of the fingers would lead to a short circuit or
possible structural damage, which may both damage the
device.

Important performance measures for accelerome-
ters include footprint area of the sensing element, and
the sensitivity of the output signal with respect to an
applied acceleration. Other factors to be considered

during design include noise, sensing range, resonance
frequencies, operational bandwidth, dynamic mode de-
coupling, and fabrication limitations.

3 Analysis disciplines

The analysis models for the accelerometer are parti-
tioned into the four disciplines that contribute to the
functionality of the device. The four subsystems are:
Structures, Electrostatics, Dynamics, and Circuit. The
four disciplines are coupled in two ways: The models
of the subsystems may depend on the same design
parameters, or the models of one subsystem depend on
the outputs of another subsystem. An example of the
former is that the models for Structures and Electrosta-
tics both depend on the comb dimensions. In the latter
case, Structures for example computes the responses
required as inputs for the lumped model of the Dynam-
ics subsystem. An overview of the four disciplines and
their interactions is given in Fig. 2.

3.1 Structures

For subsystem Structures, we present analytical mod-
els for the effective mass, spring constants, and the
damping coefficient as functions of the dimensions and
material parameters of the device (see Fig. 3 for a
definition of the dimensions). Furthermore, Structures
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Fig. 2 Analysis disciplines and their interdependencies

includes several geometric and manufacturing design
constraints that limit feature sizes, total device area,
and prevent buckling. The analysis models are obtained
from Mukherjee et al. (1999) and Zhou (1998), except
for the mechanical spring stiffness analysis and some
extensions to the damping coefficient model. The spring
model is developed here from linear beam theory, and
the damping model is extended to also account for the
small aspect ratios in squeezed film damping using the
models of Veijola et al. (2005).

3.1.1 Area, mass, and moment of inertia

The area of the smallest rectangle in which the ac-
celerometer is enclosed determines the number that
can be fabricated on a single wafer. Since cost benefits
can be expected for smaller designs, the footprint area
of the rectangle is a factor in the design. The width
of this rectangle is determined by either the U-spring
length or the width measured at the stator fingers, such
that the area A of the enclosing rectangle is

A = lw = l max([2lb1 + wa], [wp + 2(lf + ls2 + wsa)])
(1)

where l = lp + 2lb2 + 2la is the total length of the design
in x direction, w the width of the design in y direction,
lp and wp the length and width of the proof mass, lb1

and lb2 the lengths of beams 1 and 2 of the U-spring, la

the length of the spring anchor, lf the length of a rotor
finger, ls2 the additional length of the long stator finger,
and wsa the width of the stator finger anchor. Note that
the thickness of the U-spring beams in x direction is
neglected.

The effective moving mass m can be found by a sum-
mation of the mass of the rotor fingers of the sense and
feedback units, and the proof mass itself. We neglect
the mass of the limit stops and the U-springs since their
contributions are small. The effective mass m is given
by

m = ρhlpwp + ρhlfwf(Ns + Nf) (2)

where each sense or feedback unit contains one rotor
finger. Here ρ = 2331 kg/m2 is the material density
of the polysilicon fabrication material, h is the struc-
tural out-of-plane height, wf is the width of the rotor
fingers, and Ns and Nf are the number of sense and
feedback cells. The moment of inertia J around the
center of mass can be determined by a summation of
the contributions of the proof mass Jp, and the sense
and feedback rotor fingers Js and Jf, respectively

J = Jp + Js + Jf (3)

where the individual contributions are given by

Jp = ρhlpwp
l2
p + w2

p

12
(4)

Js = 2ρhlfwf

Ns/2∑

i=1

[
l2
f + w2

f

12
+ (r2

xs,i + r2
y)

]
(5)

Jf = 4ρhlfwf

Nf/4∑

i=1

[
l2
f + w2

f

12
+ (r2

xf,i + r2
y)

]
(6)

Due to symmetry, the number of sense units Ns is
always even, and the number of feedback units Nf

is a multiple of four. Here (rxs,i, ry) and (rxf,i, ry) are
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Fig. 3 Dimensional variables of accelerometer layout
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the coordinates of the center of mass of the i-th rotor
finger relative to the center of the proof mass. These
coordinates are given by

rxs,i = lsu/2 − ws − gs − wf/2 (7)

− (i − 1)(2gs + wf + 2ws + gsu)

rxf,i = lsu/2 + gsf + ws + gf + wf/2 (8)

+ (i − 1)(2gf + wf + 2ws + gfu)

ry = wp/2 + lf/2 (9)

where ws is the width of the stator fingers, gs and gf

are the gap sizes between the sense and feedback elec-
trodes, gsu and gfu are the gaps between the individual
sense and feedback cells, gsf is the gap between the
sense and feedback regions, and lsu = Ns/2(2gs + wf +
2ws) + (Ns/2 − 1)gsu is the total length in x-direction of
all sense units on one side of the proof mass. Again we
neglect the small contributions of the limit stops and U-
springs.

3.1.2 Damping coefficient

In the lumped parameter model we only consider
damping in the sensing direction. Although damping
also occurs in the other two directions, their contri-
butions to the overall sensing performance are small
and are therefore neglected. As a damping model, we
consider two contributions: Damping due to Couette
flow beneath the proof mass as the shuttle displaces
(b c), and squeezed film damping between the fingers
(b s). The total damping coefficient b is then given by
b = b c + b s. Since the movement of the proof mass is
expected to be at frequencies well below its resonance
frequency, Stokes flow contributions can be neglected
(Cho et al. 1994).

The damping coefficient b c due to Couette flow
beneath the proof mass and fingers is given by (Senturia
2001)

b c = μ
[
lpwp + (Ns + Nf)lfwf

]

d
(10)

where μ = 18 · 10−6 Ns/m2 is the viscosity of air, and d
is the air gap between the proof mass and the substrate.

Squeezed film damping between the rotor and stator
comb fingers (2 times Nf + Ns gaps) can be approxi-
mated by a damping coefficient b s (Veijola et al. 2005)

b s = 2lov

[
Nfμe,s

(
h + hs

gs

)3

+ Nsμe,f

(
h + hf

gf

)3
]

(11)

where lov is the length of the overlapping region
of the stator and rotor fingers, μe,s = μ

1+6Kns
(μe,f =

μ

1+6Knf
) is the effective viscosity of the air between the

sense (feedback) fingers, hs = 1.3gs(1 + 3.3Kns) (hf =
1.3gf(1 + 3.3Knf)) is an empirically determined elon-
gation correction to account for the small aspect ratio
h
gs

( h
gf

) of the air gaps, Kns = λ
gs

(Knf = λ
gf

) is the
Knudsen number, and λ = 6.5 · 10−8 m is the mean free
path of air at atmospheric pressure.

3.1.3 Mechanical spring stiffness

To compute the mechanical spring coefficients kx = Fx
u ,

ky = Fy

v
, and kθ = M

ϑ
for inertia forces acting on the

center of the proof mass, we use the three-beam model
depicted in Fig. 4. For our analysis, we assume that
node 3 is fixed (clamped), and a displacement [u, v, ϕ]
is forced upon node 4. Due to symmetry, forces Fx and
Fy acting on the proof mass are also acting on node
4 (forces divided by 4 obviously since we have 4 U-
springs). Therefore, we can find the stiffness in the x
and y direction by determining the spring constants of
the structure of Fig. 4a by applying different values for
u, v and ϕ. For the stiffness in x direction, we take
u �= 0, v = 0, and ϕ = 0, while for the y direction we
use u = 0, v �= 0, and ϕ = 0.

For each U-spring we compute the stiffness matrix

K̃44 =
⎡

⎣
Kx Kxy Kxϕ

Kxy Ky Kyϕ

Kxϕ Kyϕ Kϕ

⎤

⎦ (12)

Fig. 4 Model for computing
mechanical stiffness
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that relates the displacements u and v and rotation
φ of node 4 to the applied forces X4, Y4, and M4

at that node. This stiffness matrix can be determined
straightforwardly from linear beam theory. The analy-
sis models for determining the stiffness matrix K̃44 are
given in the Appendix. Since we have 4 identical U-
springs, the total stiffness constants in x and y directions
are given by kx,m = 4Kx and ky = 4Ky, where we use
the suffix m to differentiate between the mechanical
spring stiffness and the electrostatic contribution kx,e.

The rotational stiffness kθ requires a different ap-
proach since the center of rotation is at the center
of the proof mass, and not at node 4. We use a
simple model to translate a rotation ϑ at the cen-
ter of the proof mass into displacements and ro-
tation of node 4. Assuming small rotations and a
rigid proof mass gives u4 = [u, v, ϕ] = [wp

2 ϑ,
lp

2 ϑ, ϑ] =
pϑ , where p = [wp

2 ,
lp

2 , 1]T (Fig. 4c). Similarly, the forces
F4 = [X4, Y4, M4] acting on node 4 generate a mo-
ment M = wp

2 X4 + lp

2 Y4 + M4 = pTF4 around the cen-
ter of the proof mass. From (88) and by neglecting
cross-axis sensitivities (Kxy = 0) we have for the reac-
tion forces F4 = [X4, Y4, M4]T = K̃44u4 = K̃44pϑ . With
M = pTF4 = pTK̃44pϑ , the torsional stiffness Kθ =
M/ϑ for a single spring is given by Kθ = pTK̃44p. Since
we have 4 identical U-springs, the total rotational stiff-
ness is given by kθ = 4Kθ .

3.1.4 Design constraints

The constraints of the Structures discipline are used
to have enough room between the various parts of
the device, and to prevent unwanted geometries. Con-
straint gs,1 limits the length of the device to be below
lmax (lp + 2(lb2 + la) ≤ lmax):

gs,1 = lp + 2(lb2 + la)

lmax
− 1 ≤ 0 (13)

The width measured either at the comb or spring is
constrained to be below wmax by constraints gs,2 (wp +
2(lf + ls2 + wsa) ≤ wmax), and gs,3 (wp + 2lb3 ≤ wmax):

gs,2 = wp + 2(lf + ls2 + wsa)

wmax
− 1 ≤ 0 (14)

gs,3 = wp + 2lb3

wmax
− 1 ≤ 0 (15)

Constraint gs,4 assures that beam 2 is long enough to
incorporate the limit stop plus its required gap (lb2 ≥
gx + lls):

gs,4 = 105(gx + lls − lb2) ≤ 0 (16)

The large factors in the above constraint, and con-
straints gs,5–gs,13, gs,15, and gs,18, are used for scaling
purposes (we scaled in this way to preserve the linearity
of the constraints). Constraint gs,5 requires beam 1
of the U-spring to leave enough room for the spring
anchor (wp + 2lb3 ≥ wa + 2lb1):

gs,5 = 105(wa + 2lb1 − wp − 2lb3) ≤ 0 (17)

Contact between the stator fingers and the proof mass
is prevented by constraining the limit stop gap gy with
gs,6 (gy ≤ 0.9(lf − lov)):

gs,6 = 106(gy − 0.9(lf − lov)) ≤ 0 (18)

Constraint gs,7 makes sure that the anchor for the short
stator fits between the two stator fingers (lsa ≤ ws +
gs + wf):

gs,7 = 106(lsa − ws − gs − wf) ≤ 0 (19)

The x limit is constrained to be smaller than both gs and
gf through gs,8 (gx ≤ 0.9gs), and gs,9 (gx ≤ 0.9gf):

gs,8 = 106(gx − 0.9gs) ≤ 0 (20)

gs,9 = 106(gx − 0.9gf) ≤ 0 (21)

Constraint gs,10 makes sure that the limit stops are on
the proof mass and not on the spring beams (wp/2 ≥
wsb/2 + gy + wls):

gs,10 = 104(wsb/2 + gy + wls − wp/2) ≤ 0 (22)

Constraints gs,11, gs,12, and gs,13 restrict the aspect ratios
of the U-spring beams to be below 70 to prevent ex-
tremely slender beams that are likely to buckle:

gs,11 = 104(lb1 − 70wb) ≤ 0 (23)

gs,12 = 104(lb2 − 70wb2) ≤ 0 (24)

gs,13 = 104(lb3 − 70wb) ≤ 0 (25)

Spring clearance constraint gs,14 assures that the gap
between the U-spring beams and the first stator finger
is at least gmin:

gs,14 = − 1
2gmin

[
lp − 2wb − 2gsf

− Nf/2(wf + 2ws + 2gf) − 2(Nf/2 − 1)gfu

− Ns/2(wf+2ws+2gs) − (Ns/2 − 1)gsu
] + 1 ≤ 0

(26)



A micro-accelerometer MDO benchmark problem 261

Constraint gs,15 assures that the width of the stopping
block does not exceed the width of the U-spring
anchor:

gs,15 = 105(wsb − wa) ≤ 0 (27)

Constraints gs,16 and gs,17 constrain the area to be at
most Amax, where the width is measured at the fingers
(gs,16) and the anchors (gs,17):

gs,16 = (lp + 2(lb2 + la))(wp + 2(lf + ls2 + wsa))

Amax
− 1 ≤ 0

(28)

gs,17 = (lp + 2(lb2 + la))(wp + 2lb3)

Amax
− 1 ≤ 0 (29)

Constraint gs,18 limits the length of beam 2 to be at least
3 times the gap gx in x-direction:

gs,18 = 106(3gx − lb2) ≤ 0 (30)

The initial values of the design parameters are listed in
Table 2.

3.2 Electrostatics

In subsystem Electrostatics, we use analytical models
from Senturia (2001) to determine the spring softening
effect, the differential capacitance sensitivity, the para-
sitic capacitance, and the maximally detectable acceler-
ation as functions of the dimensions of the fingers and
gaps, and the modulation voltage.

3.2.1 Differential capacitance sensitivity and parasitic
capacitance

To determine the at-rest sensing and feedback ca-
pacitances Cs and Cf, we use parallel-plate estimates
(Senturia 2001). A single stator-rotor-stator finger cell
as depicted in Fig. 5 can be seen as two parallel plate
capacitors, where Vs is the modulation voltage. With

lov

g+x

+Vs

-Vs

Vx

x
g-x +Vs

-Vs

Vx

Cp

C1(x)

C2(x)

stator

stator
rotor

Fig. 5 Single stator-rotor-stator cell (left) and equivalent circuit
(right)

all capacitors connected in parallel, the capacitance for
the Ns sense cells as a function of the displacement x is

Cs,1(x) = Ns
εlovh
gs − x

Cs,2(x) = Ns
εlovh
gs + x

(31)

where ε = 8.859 · 10−12 F/m is the permittivity of air,
lov the overlap length, h the structural height, and gs

the nominal gap between the stator and rotor fingers.
Cs,1 is associated with the gaps that become smaller
for increasing x, and Cs,2 for the increasing gaps. Note
that the contributions of the fringing fields have been
neglected here.

The nominal at-rest capacitance Cs for the sense
units is given by

Cs = Cs,1(x = 0) = Cs,2(x = 0) = Ns
εlovh

gs
(32)

Similarly, the at-rest capacitance for the feedback units
is given by

Cf = Nf
εlovh

gf
(33)

The differential capacitance sensitivity Sd = 	C(x)

x in
[F/m] is defined as the ratio between the differential
capacitance change 	C(x) and the displacement x of
the proof mass. For small movements x, the differential
capacitance 	C(x) = Cs,1(x) − Cs,2(x) is approximated
by

	C(x) = Cs,1(x) − Cs,2(x) = Cs
gs

gs−x − Cs
gs

gs+x

= 2Csgsx
g2

s −x2 ≈ 2xCs
gs

(34)

and the differential capacitance sensitivity Sd in [F/m]
becomes

Sd = 	C(x)

x
= 2Cs

gs
(35)

The parasitic capacitance Cp from the proof mass and
rotor fingers to the substrate is determined using a
parallel plate estimate as well

Cp = εlpwp

d
+ (Ns + Nf)

εlfwf

d
(36)

where d is the air gap height between the suspended
structure and the substrate.

3.2.2 Spring softening, pull-in, and self-test

When an AC voltage with amplitude Vs0 and a fre-
quency much larger than the measurement frequency
is applied to measure the displacement x, electrostatic
forces on the movable fingers are introduced. Each
gap generates a force proportional to the inverse of
the square of the gap size. For x = 0, these forces are
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equal and opposite and cancel each other out. For non-
zero displacements however, a net electrostatic force
in the direction of x is generated. Since this force is in
opposite direction to the spring restoring force, a spring
softening effect occurs. For each gap g, the magnitude
of the electrostatic force F is (Senturia 2001)

F = εlovhV2
s0

4g2
(37)

The net electrostatic force Fe acting on the movable fin-
gers due to a displacement of size x can be determined
from the difference between the forces generated by
the two gaps

Fe = F1 − F2 = εlovhV2
s0

4(gs − x)2
− εlovhV2

s0

4(gs + x)2
= CsV2

s0g2
s x

(g2
s − x2)2

(38)

For large displacements, the electrostatic force Fe be-
comes larger when the displacement x increases and
tends to infinity as x → gs.

The contribution of the electrostatic force Fe can be
seen as an additional stiffness kx,e. Since the force is in
the direction opposite to the spring restoring force, the
electrostatic force has a spring-softening effect, and the
stiffness kx,e is negative. The stiffness kx,e is a function
of the position x and is given by

kx,e(x) = −dFe(x)

dx
= − Cs Vs0

2gs
2
(
gs

2 + 3 x2
)

(
gs

2 − x2
)3 (39)

For small displacements x � gs, the spring-softening
effect can be approximated by a constant stiffness k0

x,e
defined as

k0
x,e = kx,e(x = 0) = −CsV2

s0

g2
s

(40)

When an external acceleration in the x direction is
applied, the inertial force Fx = max is balanced by the
spring restoring force Fm = kx,mx and the electrostatic
force Fe:

max = Fm + Fe = kx,mx − CsV2
s0g2

s x
(g2

s − x2)2
(41)

Hence, the maximally detectable acceleration due to
pull-in amax,pi occurs where Fm + Fe is maximal. For
any acceleration larger than amax,pi, the spring restoring
force will not be large enough to compensate for the
inertial and electrostatic forces. The residual force will
pull the proof mass into the limit stops, or worse, create
contact between the comb fingers. This phenomenon is
known as pull-in, and is undesirable.

The force Fx = Fm + Fe is maximal where its deriv-
ative is zero:

dFx

dx
= dFm

dx
+ dFe

dx
= kx,m − Cs Vs0

2gs
2
(
gs

2+3 x2
)

(
gs

2−x2
)3 = 0

(42)

The solution xpull, obtained with Matlab’s symbolic
solver (Mathworks 2008), is given by

xpull =

⎧
⎪⎨

⎪⎩

gs

√
1 + c

k − 1
c for k ≤ 1

0 otherwise

(43)

where k = kx,m

|k0
x,e| , c =

[
2k2

(√
1 + 1

4k − 1
)] 1

3

. This solu-

tion is nonsmooth at kx,m = |k0
x,e|. For values of kx,m

equal to or smaller than this value, the equilibrium at
x = 0 becomes unstable and even the smallest applied
acceleration causes pull-in since the net electrostatic
force exceeds the spring restoring force for every x �= 0.
The maximally detectable acceleration amax,pi is given
by

amax,pi = kx,mxpull

m
− CsV2

s0g2
s xpull

m(g2
s − x2

pull)
2

(44)

To prevent contact of the comb fingers, limit stops are
positioned at both ends of the proof mass. If the gap
size gx is smaller than the pull-in displacement xpull,
then the maximally detectable acceleration is limited
by the maximal deflection gx. The maximally detectable
acceleration due to the limit stops is then given by

amax,ls = kx,mgx

m
− CsV2

s0g2
s gx

m(g2
s − g2

x)
2

(45)

The feedback fingers are used to apply an electrostatic
force Fd on the proof mass to mimic an external acceler-
ation which can be used for self-test. To obtain a linear
relation between the applied drive voltage Vd and the
generated electrostatic force Fd, voltages Vc,d + Vd and
Vc,d − Vd are applied separately across the two comb
finger gaps (Boser and Howe 1995). Here Vc,d is a fixed
center voltage, and Vd is the controlling drive voltage.
In this case, the force Fd is given by

Fd = 2Vc,dVdCf

gf
(46)

and the maximally acceleration for self-test amax,st

becomes

amax,st = Fd

m
= 2Vc,dVdCf

mgf
(47)



A micro-accelerometer MDO benchmark problem 263

3.2.3 Design constraints

The design constraints for subsystem Electrostatics are
concerned with avoiding pull-in of the capacitors and
requiring a minimal self-test force. Constraint ge,1 as-
sures that the spring-softening effect does not reduce
the stiffness to a point where pull-in occurs already
at very low accelerations by constraining the at-rest
negative stiffness to be at most 90% of the mechanical
stiffness (−kx,e ≤ 0.9kx,m):

ge,1 = −kx,e − 0.9kx,m ≤ 0 (48)

Constraints ge,2 and ge,3 make sure that the limit stop
is hit before pull-in occurs for large input accelerations
(gx ≤ 0.9xpull), and that the sense gap is larger than the
pull-in displacement (xpull ≤ 0.9gs):

ge,2 = 106(gx − 0.9xpull) ≤ 0 (49)

ge,3 = 106(xpull − 0.9gs) ≤ 0 (50)

The maximally detectable acceleration amax is con-
strained to be below the pull-in acceleration by
ge,4 (amax ≤ amax,pi), and below the limit stop accelera-
tion by ge,5 (amax ≤ amax,ls):

ge,4 = (1 − amax,pi

amax
)

[( gs

10−6

)2 −
( xpull

10−6

)2
]2

≤ 0 (51)

ge,5 = (1 − amax,ls

amax
)

[( gs

10−6

)2 −
( gx

10−6

)2
]2

≤ 0 (52)

Constraint ge,6 requires that the maximally self-testable
acceleration is at least equal to the desired testable
acceleration ast (amax,st ≥ ast):

ge,6 = −amax,st

ast
+ 1 ≤ 0 (53)

Constraints ge,2 and ge,3 together with the last terms in
constraints ge,4 and ge,5 are used to avoid the singularity
in amax,pi and amax,ls that arises for gs = xpull and gs =
gx, respectively. Note that constraint ge,4 will never be
active since the limit stop will be hit before pull-in can
occur. The constraint is only included here for com-
pleteness. The initial values of the design parameters
are listed in Table 2.

3.3 Dynamics

In subsystem Dynamics, a lumped parameter model
taken from Mukherjee et al. (1999) is used to evalu-
ate the dynamical characteristics of the accelerometer.
The accelerometer is modeled as a mass-spring-dashpot

system as illustrated in Fig. 6 from which resonance fre-
quencies, mechanical sensitivity, and mechanical noise
can be determined.

3.3.1 Resonance frequencies, bandwidth, quasi-static
sensitivity, and noise

The model parameters are the effective mass m and the
rotational inertia J of the proof mass and rotor fingers,
the spring constants kx and ky of the U-springs in x and
y directions respectively, and the rotational stiffness of
the U-springs kθ around the center of the proof mass.
Note that the stiffness in the x direction includes the
electrostatic spring softening effect kx = kx,m + k0

x,e.
The resonance frequencies in [rad/s] in x, y, and ϑ

directions are given by

ωx =
√

kx

m
ωy =

√
ky

m
ωθ =

√
kθ

J
(54)

The so-called quality factor Q related to the damping
of the movement in the x direction (dimensionless) is

Q = ωxm
b

(55)

The device is designed to operate under quasi-static
conditions such that the proof mass displacement fol-
lows the time-evolution of the applied acceleration.
Therefore, one designs the accelerometer to have a
resonant frequency much larger than the expected max-
imum frequency component of the acceleration signal
(Senturia 2001). Under quasi-static conditions, the time
derivatives of x are zero for frequencies well below
resonance (ω � ωx), and the mechanical sensitivity Sm

in [m/(m/s2)] of the displacement x resulting from an
applied acceleration ax is given by

Sm = x
ax

= m
kx

= 1

ω2
x

(56)

Note that the sensitivity Sm is inversely proportional to
the square of the resonance frequency. For accelerom-
eters that respond quickly, and hence have a high res-
onance frequency, the amplitude of the position signal
to be sensed will be small.

x

y

m, J
ky

kx b

k

θ

θ

Fig. 6 Mass-spring-dashpot model for the accelerometer
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The −3dB (or half-power) cut-off frequency ω−3dB

defining the mechanical bandwidth of the system is
given by

ω−3dB = ωx

√

1 − 1

2Q2
+ 1

2Q2

√
1 − 4Q2 + 8Q4 (57)

To convert all angular frequencies ω in [rad/s] to fre-
quencies f in [Hz], divide by 2π .

In the mechanical domain, random collision of air
molecules with the accelerometer introduces so called
Brownian (thermal) noise. This noise can be trans-
formed into an equivalent acceleration an,m of (Senturia
2001)

an,m =
√

4kBTb
m

√
ω

2π
(58)

where kB = 1.28 · 10−23 m2kgs−2K−1 is the Boltzmann
constant, T = 298 K is the absolute temperature, and
ω in [rad/s] is the frequency range over which the noise
contributes. Together with the electronic noise (see
next section), the mechanical noise limits the minimally
detectable acceleration.

3.3.2 Design constraints

The constraints of subsystem Dynamics are mainly used
to guarantee appropriate operating conditions for the
sense mode. In-plane mode decoupling constraints gd,1

and gd,2 assure that the resonant mode in x dominates
the modes in y (ωx ≤ 0.1ωy), and θ (ωx ≤ 0.1ωθ ):

gd,1 = 10−5(ωx − 0.1ωy) ≤ 0 (59)

gd,2 = 10−5(ωx − 0.1ωθ) ≤ 0 (60)

where the factors in front of the constraints are used
for scaling. Constraint gd,3 requires the mechanical
bandwidth ω−3dB to be at least a minimal value ωmin

(ω−3dB ≥ ωmin):

gd,3 = −ω−3dB

ωmin
+ 1 ≤ 0 (61)

Quasi-static operating conditions are enforced by con-
straint gd,4, which sets the measuring frequency ω to be
well below the resonant frequency ωx (ω ≤ 0.1ωx):

gd,4 = −0.1ωx

ω
+ 1 ≤ 0 (62)

The initial values of the design parameters are again
listed in Table 2.

3.4 Circuit

In subsystem Circuit, we consider the conditioning cir-
cuit that is used for transforming the differential capac-
itance into an output voltage. The conditioning circuit,
which is partly taken from Senturia (2001), consists of
a voltage source, the differential capacitor sensing el-
ement, a charge-amplifier, an additional non-inverting
amplifier, a synchronous demodulator, and a low-pass
filter. The variables relevant for the electronics mod-
els include resistance, capacitance, and voltage values.
From these values, we can determine the sensitivity of
the output with respect to a change in the differential
capacitance, and quantify measurement noise.

3.4.1 Circuit components

The layout of the conditioning circuit is depicted in
Fig. 7. The circuit consists of an AC voltage source Vs

with amplitude Vs0 in [V] and frequency ωs in [rad/s].
The generated signal as a function of the time t in
seconds is given by

Vs(t) = Vs0 cos ωst (63)

To amplify the differential capacitance 	C(x) of the
sensing element, we use a charge amplifier with feed-
back capacitance Ca. The charge amplifier output volt-
age Vca is then (Senturia 2001)

Vca(t, x) = 	C(x)

Ca
Vs(t) (64)

We assume that the feedback resistance Ra is chosen
large enough to make ωRaCa large compared to unity.

In the second stage of amplification, we use a non-
inverting amplifier with a gain Gni and ground resistor
Rni. The output voltage Va after the second stage of
amplification is then

Va(t, x) = GniVca(t, x) = Gni
	C(x)

Ca
Vs(t) (65)

As can be observed from (65), the amplitude of the
high-frequency Va(t, x) signal is proportional to the dif-
ferential capacitance 	C(x). To extract this amplitude
in a way that can follow the relatively slow variations

Vs -1

C1(x)
C2(x)

Cp

-

+
Gni

(Gni-1)Rni

Vx
Va

Glp lp Vout

Vd

source & sensor
non-inverting 

amplifier
synchronous demodulator

low-pass 
filter

+Vs

-Vs Rni + Vs

+

- Ca

Ra

charge 
amplifier

Vca

α

ω

Fig. 7 Schematic of the conditioning circuit



A micro-accelerometer MDO benchmark problem 265

associated with the changing of 	C(x), we use a syn-
chronous demodulator. The demodulator consists of an
analog multiplier of two signals: the amplified measure-
ment signal Va(t, x), and a reference signal αVs0 cos ωst,
where α can be used for scaling. When the reference
signal is in phase with the measurement signal, the
result is an output voltage Vlp(t, x) given by

Vlp(t, x) = Va(t, x) × αVs(t)
= [Gni

	C(x)

Ca
Vs0 cos ωst][αVs0 cos ωst]

= αGni
	C(x)

Ca
V2

s0[1 + cos 2ωst]
(66)

If the low-pass filter has a cut-off frequency ω � ωlp �
2ωs, the component at 2ωs is rejected and the position-
dependent component below the bandwidth frequency
ω is not. With a filter gain of Glp, the measured output
becomes

Vout(x) = αGniGlp
	C(x)

Ca
V2

s0 (67)

which follows 	C(x) naturally.

3.4.2 Sensitivity, range, and noise

The sensitivity of the conditioning circuit Sc in [V/F]
follows from

Sc = Vout(x)

	C(x)
= α

GniGlp

Ca
V2

s0 (68)

With the mechanical sensitivity Sm and the differential
capacitance sensitivity Sd, the total measurement sensi-
tivity S in [V/(m/s2)] of Vout with respect to an applied
acceleration a becomes

S = Vout

a
= Vout

	C
	C

x
x
a

= ScSdSm (69)

where x in [m] is the deflection of the proof mass due to
an applied acceleration a.

The maximally measurable acceleration (the full-
scale range afs in [m/s2]) for a sweep from −0.8Vs0 to
+0.8Vs0 depends on the supply voltage Vs0 and the total
sensitivity S, and is given by:

afs = 0.8Vs0

S
(70)

The factor 0.8 keeps the signal away from the saturation
levels of the amplifiers.

In the conditioning circuit, an output noise voltage
with root-mean-square (RMS) average Vn,th is caused
by thermal noise in the resistors. Together with the
RMS Brownian noise an,m computed at the structures

subsystem, an equivalent acceleration due to noise an

in [m/s2] is given by (Mukherjee et al. 1999)

an =
√

a2
n,m +

(
Vn,th

S

)2
ω

2π
(71)

where ω is the measurement bandwidth. Acceleration
values smaller than an cannot be distinguished from
noise, and therefore an determines the minimally de-
tectable acceleration.

3.4.3 Design constraints

A total of six design constraints are posed at subsystem
Circuit to enforce desired performance of the device
after optimization. Constraints gc,1 and gc,2 are design
constraints that make sure that the accelerometer per-
forms to certain specifications. Constraints gc,1 sets a
lower bound Smin for the total sensitivity of the device
S (S ≥ Smin):

gc,1 = − S
Smin

+ 1 ≤ 0 (72)

Constraint gc,2 constrains the noise an to be at most
the desired minimally detectable acceleration amin (an ≤
amin):

gc,2 = an

amin
− 1 ≤ 0 (73)

Constraints gc,3 and gc,4 make sure that the low-pass
filter cut-off frequency is at least 10 times larger than
the measurement frequency (ω ≤ 0.1ωlp), but at most
a tenth of the high-frequency component of Vd at
2ωs (ωlp ≤ 0.1 × 2ωs):

gc,3 = 10−3(ω − 0.1ωlp) ≤ 0 (74)

gc,4 = 10−4(ωlp − 0.2ωs) ≤ 0 (75)

The full-scale range of the accelerometer should be at
least afs ≥ ameas, which is assured by constraint gc,5:

gc,5 = − afs

ameas
+ 1 ≤ 0 (76)

Constraint gc,6 makes sure that the feedback capaci-
tance Ca is at least as large as the parasitic capacitance
Cp:

gc,6 = 1013(Cp − Ca) ≤ 0 (77)

The factors in front of constraints gc,3, gc,4, and gc,6 are
used for proper scaling.
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3.5 Influence of scaling

Since the magnitude of design parameters in SI-units
can range from 10−13 for capacitances to 105 for res-
onance frequencies, proper scaling of the problem is
vital for numerical optimizers to find accurate solutions.
This scaling concerns not only the design variables and
constraints, but also the analysis models. The stiffness
matrix for example is ill-conditioned when expressed in
SI-units since displacements are typically in μm while
rotations are of much larger order. The inversion of
an ill-conditioned stiffness matrix introduces undesired
numerical noise in the analysis results. The way of scal-
ing of the stiffness matrix as described in the Appendix
guarantees that the stiffness matrix is well conditioned,
and thereby avoids numerical noise.

4 Design optimization

In this section, we use the analysis models of the pre-
vious sections to formulate a number of design opti-
mization problems that aim at finding optimal settings
for input parameters such that desired device behavior
is obtained. The formulated problems differ in which
parameters are selected as optimization variables. We
refer to these as Case 1 through Case 4, respectively.
The first case only includes the proof mass and U-spring
dimensions as optimization variables, and the largest
problem includes 22 design variables. Even though the
presented problems are fully analytical, they are non-
linear and non-convex, common difficulties in MDO.

Beside an all-in-one formulation, we also present
four problem decompositions. These decompositions
apply to each of the four problem cases as mentioned
above. The different decompositions illustrate how dis-
tributed optimization approaches can be applied to
microsystems design problems. As a reference, we solve
the problem decompositions with several augmented
Lagrangian coordination methods, and compare the
results with those obtained with the all-in-one formu-
lation.

4.1 Baseline design

The analysis models require that values are assigned to
all input parameters. To this end, we define a baseline
design inspired by the original ADXL150 accelerom-
eter which is designed for a maximum measurement
frequency of ω = 1000 Hz. Figure 8a depicts the dimen-
sions of the sensing part of the accelerometer. The base-
line values for all parameters are given in Table 2. Most
dimensions are derived from images of actual devices

and additional information from Senturia (2001). Sev-
eral circuit parameter values are taken from Samuels
(1996) and Analog Devices Inc. (1998). The circuit
parameter values that could not be retrieved directly
(Ca, α, Glp, ωlp, Vn,th, Vd, Vc,d) are chosen such that
the performance characteristics of the baseline design
are similar to those specified in Samuels (1996); Analog
Devices Inc. (1998); Senturia (2001) for the ADXL150.
The main performance characteristics of the baseline
design are determined from the analysis models and
compared to specifications of the ADXL150 in Table 1.

4.2 All-in-one problem formulation

The formulation of the optimal design problem typi-
cally depends on the intended use of the accelerometer.
We select the footprint area A (to which fabrication
costs are proportional) as the objective of the design
problem. The design constraints make sure that perfor-
mance with respect to sensitivity, noise, and range is at
least as good as the baseline design (i.e. Smin = S(zbase),
amin = an(zbase), and ameas = afs(zbase), where zbase is the
baseline design). Formulations for maximizing sensi-
tivity, range, or bandwidth can be set up in a similar
fashion. The area-minimization problem is given by

min
z,Amax

Amax

subject to gc,1 = − S(z)
Smin

+ 1 ≤ 0
gc,2 = an(z)

amin
− 1 ≤ 0

gc,5 = − afs(z)
ameas

+ 1 ≤ 0
gf(z) ≤ 0
zlb ≤ z ≤ zub

(78)

where z are the input parameters that are selected as
optimization variables. Parameter Amax of constraints
gs,16 and gs,17 is included as an artificial optimization
variable to avoid the nonsmoothness in the definition
of the area A in (1). The functional constraints gf

assure proper functioning of the device, and include all
remaining constraints gf = [gs,1, . . . , gs,17, ge,1, . . . , ge,6,

gd,1, . . . , gd,4, gc,3, gc,4, gc,6].

Table 1 Main performance characteristics of the baseline design
as determined from the analysis models, and the specifications for
the ADXL150 (Samuels 1996; Senturia 2001)

Analysis models Specifications

Sensitivity S 39 mV/g 38 mV/g
Noise an 30 mg 32 mg
Range afs 51 g 50 g
Device area A 0.20 mm2 0.20 mm2

Resonance freq. ωx 24.1 kHz 24.7 kHz
Quality factor Q 6.4 5.0

g = 9.8 m/s2
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To keep the performance characteristics at least at
the same level as the baseline design, we take ω = 1000
Hz = 2000π rad/s, Smin = 38 mV/g, amin = 30 mg, and
ameas = 50 g. We use Lmax = wmax = 700 μm to limit
the width and length of the sensor region to be within
a square with sides of 700 μm. We set gmin = 10 μm
to provide enough space for the U-springs. Quasi-
static conditions are ensured by setting ω−3dB,min = 10ω.
The absolute maximal acceleration is set to amax =
10ameas = 500 g to provide a safety margin for shocks,
and the required self-test acceleration is set to 20% of
the full scale range: ast = 0.2ameas = 10 g.

We investigate a number of choices for the design
variables z. For the first case, we take only the variables
of the proof mass and U-springs as design variables
(components A of Table 4 only, seven variables). For
the second case, we add the sense and feedback unit
variables to z as well (A+B, 16 variables), giving the
optimization algorithm more freedom to find a design
with minimal area. For the third case, we also include
circuit parameters as design variables (A+B+C, 20 vari-
ables). The fourth case includes the number of sense
and feedback units as variables, resulting in a mixed in-
teger problem (A+B+C+D, 22 variables). An overview
of the variables for each component, and their variable
bounds are given in Table 4. In all cases, parameters
that are not taken as optimization variables are set to
their baseline values as given in Table 2. The length
of beam 3 lb3 and the length of the limit stop lls are
included as “elastic” variables to make sure that the
various components remain connected. These variables
are not included as optimization variables, but their
values change with the values of the actual optimization
variables z. For instance, the length lb3 of U-spring
beam 3 becomes shorter when the proof mass becomes
wider, and its length is therefore given by lb3 ≡ lb1 +
wa/2 − wp/2. Similarly, we have lls ≡ lb2 − gx for the
length of the limit stop.

4.3 All-in-one results

Design Cases 1, 2, and 3 are solved with the SQP
solver fmincon of Matlab 7.1 with default settings ex-
cept MaxSQPiter, which is set to 200 to prevent loops
that do not terminate in fmincon. For each case, 100
different starting points are selected randomly between
−100% and +100% of the baseline values to deter-
mine whether the design problems are multimodal or
not, and what their local solutions are. For numerical
robustness, design variables z are scaled with respect
to their baseline values zbase such that zscaled = z/zbase

where the division is taken component-wise.

Table 2 Baseline values for required input parameters

Structures

h 2.0 μm gs 1.3 μm
lp 500 μm gsu 1.3 μm
wp 50 μm Nf 12
lb1 125 μm gf 1.3 μm
lb2 6.0 μm gfu 1.3 μm
lb3 105 μm gsf 13 μm
wb 2.4 μm d 1.3 μm
wb2 4.0 μm 	ls1 15 μm
gx 0.7 μm 	ls2 25 μm
gy 1.0 μm ws 4.0 μm
lov 114 μm lsa 8.0 μm
lf 120 μm wsa 15 μm
wf 4.0 μm la 7.0 μm
Ns 42 wa 10 μm
lls 2.0 μm wsb 10 μm
wls 2.0 μm

Electrostatics Dynamics

Vs0 2.5 V J 5.3 10−6kg(μm2)*
kx,m 5.6 N/m* b 5.5 μNs/m*
m 0.23 μg* kx,e −0.24 N/m*
Vd 2.5 V ky 694 N/m*
Vc,d 2.5 V kθ 45 μNm*

ω 1000 Hz

Circuit Responses

ωs 100 kHz S 39 mV/g*
Ca 350 fF an 0.29 m/s2*
Cp 347 fF* afs 51 g*
Gni 17 A 0.21 mm2*
α 1.0 amax,pi 1869 g*
ωlp 15 kHz amax,ls 1570 g*
Glp 3 amax,st 79 g*
Vn,th 21 μV/

√
Hz xpull 0.94 μm*

Sd 100 fF/μm* ωx 24 kHz*
Sm 0.043 nm/(m/s2)* ωy 275 kHz*
an,m 0.24 m/s2* ωθ 463 kHz*

ω−3dB 37 kHz*
Q 6.4*

Values marked with an asterisk (*) are computed using the
disciplinary analysis models of Sections 3.1–3.4. g = 9.8 m/s2

Design Case 4 requires a different approach due to
the discrete nature of the design variables Ns and Nf.
We perform an enumerative search in both Ns = {2, 4,

6, . . . , 98, 100} and Nf = {4, 8, 12, 16, 20}. For each
combination of Ns and Nf, we solve 100 optimization
problems in the remaining variables of z, each with
a different starting point selected randomly between
−100% and +100% of the baseline values. The design
with the smallest Amax then gives the optimal solution.

The optimal designs for the four cases are depicted
in Fig. 8. The optimal values for the design variables
are listed in Table 4. At all solutions, the Karush-
Kuhn-Tucker conditions are satisfied indicating that
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Fig. 8 Baseline and optimal
solutions for the minimal area
accelerometer design cases

(a) Baseline (b) Case 1 (c) Case 2 (d) Case 3 (e) Case 4

the problem is well-defined. As expected, the obtained
designs become smaller as the number of design vari-
ables increases.

Table 3 summarizes the obtained optimal solutions
for each case by listing the percentage of runs that con-
verged, and the smallest, mean, and largest optimal ar-
eas for the converged solutions. The active constraints
at the optimal design are listed as well. The numbers
for Case 4 are based on the 100 starting points with the
optimal values for Ns = 10 and Nf = 4. The range of
the optimal areas is small for all cases, which suggests
that the problem may be unimodal, even though the
problem functions are non-convex (Table 4).

For Case 1, only a small area reduction is observed.
The 6% decrease in area is gained by shortening the
length of beam 2 of the U-spring to its minimally
allowed value. The design of Case 2 has considerably
shorter comb fingers, and a shorter proof mass. The
associated sensitivity loss is compensated by an increase
in proof mass width, and a reduction in the sense gap gs.
To accommodate all fingers on the shorter proof mass,
the spacing gaps gsu and g f u are reduced. Note that
the design makes optimal use of the area by making
the width at the U-springs equal to the width at the
comb fingers. The design of Case 3 has shorter fingers,
and the associated loss of sensitivity is compensated by
increasing the source voltage and signal amplification in
the Circuit subsystem. Finally, Case 4 shows a compact
design with fewer sense and feedback fingers, and a
shorter proof mass. The loss in sensitivity is compen-
sated by widening the proof mass and elongating the

fingers, but also by making the U-springs longer and
thus more flexible.

Figure 8 clearly illustrates that the biggest differ-
ences are observed for Case 2 and 4. Adding the dimen-
sions of the comb drive as variables in Case 2 reduces
the area with 52% with respect to the baseline design.
Including the circuit parameters as design variables in
Case 3 reduces the area by another 8%. When also
adding the number of fingers to the optimization vari-
ables (Case 4), another 18% is gained. Overall, the
final design for Case 4 is 78% smaller than the baseline
design.

The optimization problems are challenging for fmin-
con, even though the model functions are all analytical.
The SQP solver did not find a feasible solution for many
starting points. For all non-successful starting points,
fmincon reported “no feasible point found: Magnitude
of directional derivative in search direction less than
2*options.TolFun but constraints are not satisfied.”.
We expect that the linearization of the constraints that
fmincon employs has difficulties with the nonlinearity
and non-convexity of the analysis models.

4.4 Four problem decompositions

Four different problem decompositions are presented
to illustrate several ways in which distributed opti-
mization can be used for this design problem. The
decompositions also illustrate the various ways in which

Table 3 Number of converged runs, optimal areas in mm2, and active constraints at the optimal design for all-in-one experiments

Case 1 Case 2 Case 3 Case 4

Converged 15% 10% 15% 6%
Area Min 0.1878 0.0962 0.0807 0.0451

Mean 0.1879 0.0963 0.0810 0.0455
Max 0.1883 0.0964 0.0817 0.0472

Active constraints gs,{4,5,14,15,17,18} gs,{4,5,6,7,14,15,16,17,18} gs,{4,5,6,7,14,15,16,17,18} gs,{4,5,6,7,11,14,15,16,17,18}
gc,{2,5} ge,2, gc,{1,2} ge,2, gc,{2,6} ge,2, gc,{2,6}
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Table 4 Variable selections for the different design cases and optimal values

Components Variables Lower Upper Optimal designs
Base Case 1 Case 2 Case 3 Case 4

A Proof mass & Amax [mm2] 0.01 1.0 0.188 0.0962 0.0807 0.0449
U-springs lp [μm] 2 400 500 477 355 355 133

wp [μm] 2 700 50 49.3 80.8 81.6 139
lb1 [μm] 2 400 125 107 124 103 145
lb2 [μm] 1 200 6.00 2.10 1.50 1.50 1.51
wb [μm] 2 10 2.40 2.00 2.00 2.00 2.07
wb2 [μm] 2 10 4.00 2.03 2.00 2.00 2.00
lb3* [μm] 2 400 105 87.4 88.6* 67.2* 80.5*
lls* [μm] 1 100 2.00 1.40 1.00* 1.00* 1.01*

B Comb lf [μm] 2 400 120 120 38.9 17.4 30.4
lov [μm] 2 400 114 114 37.8 16.3 29.2
gs [μm] 0.5 20 1.30 1.30 0.84 0.80 0.80
gsu [μm] 0.5 20 1.30 1.30 0.50 0.50 0.50
gf [μm] 0.5 20 1.30 1.30 0.79 0.95 1.89
gfu [μm] 0.5 20 1.30 1.30 0.50 0.50 0.50
gx [μm] 0.5 20 0.70 0.70 0.50 0.50 0.50
wf [μm] 2 20 4.00 4.00 5.16 5.20 5.20
ws [μm] 2 20 4.00 4.00 2.00 2.00 2.00

C Circuit Vs0 [V] 1 4 2.50 2.50 2.50 4.00 4.00
Vd [V] 1 4 2.50 2.50 2.50 2.64 3.32
Ca [fF] 1 1000 350 350 350 231 141
Gni [–] 1 20 17.0 17.0 17.0 20.0 20.0

D Fingers Ns [–] 2 100 42 42 42 42 10
Nf [–] 4 20 12 12 12 12 4

Values in italic are not optimized but inherited from the baseline design. Dependent variables marked with an asterisk (*) are not
included in z but are determined from the definitions lb3 ≡ lb1 + wa/2 − wp/2 and lls ≡ lb2 − gx

microsystem design problems may be partitioned.
Figure 9 depicts the subsystems, and the distribution of
variables and functions for each problem decomposi-
tion.

The first problem decomposition has three sub-
systems that each represent a level of abstraction.
Figure 9a depicts the distribution of variables and
functions over the three subsystems. At the bottom
subsystem, the detailed design of the sensing element
geometry is taken into account. The middle subsystem
considers a lumped parameter model of the sensor dy-
namics, and the top level includes the sensing element
and the electronic circuit. Problem decompositions of
this type are commonly referred to as object-based
decompositions, and are often hierarchically struc-
tured. Note that the variables linking the subsystems
are not optimization variables in the all-in-one formu-
lation but intermediate analysis quantities computed by
one discipline that are used inputs to another discipline.
They appear here as a result of decomposition.

The second decomposition, depicted in Fig. 9b, is a
“traditional” multidisciplinary problem decomposition
with four subsystems in the sense that it has one subsys-
tem for each analysis discipline. For this decomposition,
the linking variables are a mixture of analysis coupling

variables, similar to the previous decomposition, and
actual design variables of the all-in-one problem.

The third decomposition (Fig. 9c) is object-based
and consists of four subsystems. The mid-level Sensor
dynamics and top-level Circuit subsystem are identical
to their counterparts in the first decomposition. The
two lower-level subsystems are associated with the
spring design, and the proof mass and fingers designs,
respectively. The coupling constraints gs,4, gs,14, gs,16,
gs,17, and gs,18 link the lower-level subsystems.

The fourth problem decomposition has four subsys-
tems with non-separable coupling constraints (Fig. 9d),
and is a mixture of an object-based and an aspect-based
decomposition. The Circuit subsystem is only coupled
to the other three through the coupling constraints,
and variable Vs0 for Cases 3 and 4. The variables of
subsystem Circuit appear only in Cases 3 and 4. Since
its variables do not appear in Cases 1, and 2, the actual
optimization of Circuit is omitted for these cases. Note
that the analysis models of the Circuit subsystem are
still included for the computation of system perfor-
mance.

In this fourth problem decomposition, subsystems
are linked through non-separable coupling constraints.
These non-separable functions depend on the design
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Fig. 9 Distribution of
variables and function for the
four problem decomposition.
Single arrows indicate
analysis model dependencies,
double arrows indicate design
variable sharing, and dashed
arrows indicate function
dependencies
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variables of two or more subsystems. Of these con-
straints, gs,4, gs,14, gs,16, gs,17, gs,18 depend on variables
from the spring and mass subsystems, and constraints
gc,1, gc,2, gc,5, and gc,6 link the circuit, dynamics, and
mass subsystems.

4.5 Distributed optimization results using ALC

This section presents results for augmented Lagrangian
coordination approaches (ALC, Tosserams et al. 2006,
2007, 2008, 2009a) that have been used to coordinate
the four problem decompositions introduced in the pre-
vious section. For each decomposition one appropriate
ALC coordination variant is selected. These results
may be used as a reference for comparison of coor-
dination algorithms. Note that it is beyond the scope
of this paper to describe the ALC method and its
implementation for this problem in detail. Our focus
is to demonstrate that the benchmark problem has
been solved with an actual distributed optimization
approach, ALC in this case. For the details of ALC

and the four coordination variants, the reader is refer
to the references above.

Each problem decomposition of Fig. 9 was solved
with an appropriate coordination algorithm from 10 dif-
ferent initial designs selected randomly between −50%
and +50% of the baseline values. For each design,
we measured whether the run converged, how many
iterations it took (in required number of subproblem
optimizations), and what the optimal area of the final
design is.1

Unless indicated otherwise, termination tolerances
for the coordination algorithms were set to 10−3. For
all decompositions we used the initial weight selection
strategy as described in Tosserams et al. (2008) with
α = 0.1, v = 0, w = 10−3, and f̂ = 1. Furthermore, the

1ALC introduces local copies of linking variables at subsys-
tems. Hence the optimal value of a linking variable is taken
as the average over these copies. The reader is referred to the
aforementioned references for more detail on the use of linking
variable copies in ALC.
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Table 5 Results for Decomposition 1 using ATC, Decomposition 2 using ALC-QS, and Decomposition 3 using ALC-BS

Decomposition 1 with ATC Decomposition 2 with ALC-QS Decomposition 3 with ALC-BS
Area in Iters Maximal Area in Iters Maximal Area in Iters Maximal
mm2 constraint mm2 constraint mm2 constraint

Case 1 Min 0.1916 40 0.0000 0.1922 47 0.0000 0.1973 84 0.0000
100%–100%–100% Mean 0.1918 57 0.0004 0.1942 60 0.0012 0.2021 102 0.0033
(0.1878) Max 0.1922 96 0.0017 0.1957 83 0.0041 0.2081 136 0.0042

Case 2 Min 0.0965 50 0.0000 0.0966 57 0.0000 0.0971 54 0.0022
80%–100%–100% Mean 0.1083 86 0.0007 0.0978 73 0.0070 0.1020 61 0.0110
(0.0962) Max 0.1338 156 0.0022 0.0988 94 0.0214 0.1069 74 0.0343

Case 3 Min 0.1021 79 0.0000 0.0988 93 0.0000 0.0842 46 0.0021
20%–100%–100% Mean 0.1430 87 0.0000 0.1054 118 0.0000 0.0876 60 0.0179
(0.0807) Max 0.1839 95 0.0000 0.1181 144 0.0001 0.0967 72 0.0443

For each design case, the percentage of converged starting points is indicated. Values between parenthesis are optimal areas in mm2

obtained with the all-in-one formulation

weight update approach of Tosserams et al. (2008) with
β = 1.1 and γ = 0.9 was used. Although no detailed
fine-tuning of these parameters has been performed,
they appear to work well in practice.

The optimization subproblems were solved with
fmincon using default settings. Computational diffi-
culties as observed for the all-in-one formulation are
expected at the subproblems as well. To make sure
that each subproblem communicated a correct solution,
only solutions from a successful fmincon run were used.
If a subproblem did not converge, its optimization was
restarted from a perturbed starting point. Note that
these restarts are infrequent and appear only in the
first few iterations. Since augmented Lagrangian coor-
dination requires continuous design variables, Case 4
was not included in the distributed experiments. An
alternative coordination approach that handles integer
variables can be found in Michalek and Papalambros
(2006).

4.5.1 Decomposition 1 with ATC

We first consider problem decomposition 1 shown in
Fig. 9a. This object-based decomposition has a hier-
archical structure, and its solution can be coordinated
with the alternating direction method of multipliers
for analytical target cascading, denoted here by ATC
(Tosserams et al. 2006).2 Since ATC allows targets and
responses only between two consecutive levels, dummy
target-response couples are introduced at the Dynamics
subsystem for Sd, Vs0, and Cp.

The results for the experiments are depicted in
Table 5. The results show that ATC is able to find
optimal solutions close to those obtained with the

2ATC is a subclass of ALC, see Tosserams et al. (2008).

all-in-one approach for the first two cases. The final
case shows less optimistic results since only a few
experiments converged to a solution. The remaining
starting points either reached the maximum number of
iterations (500), or converged to an inconsistent solu-
tion. The solutions of Case 3 that did converge showed
a relatively high objective function value. Why ATC
performs so poorly for this particular case is not clear,
but possible explanations may be the non-convexity
of the problem, and the lack of global optimality at
subproblems due to the local search algorithm.

The average coordination costs for ATC range from
around 20 to 100 subproblem optimizations. As can
be expected, the average number of subproblem opti-
mizations increases as the number of design variables
increases with each case.

4.5.2 Decomposition 2 with ALC-QS

The second problem decomposition, shown in Fig. 9b,
has only linking variables, and was solved with the aug-
mented Lagrangian coordination approach for quasi-
separable problems denoted ALC-QS (Tosserams et al.
2007). The results of Table 5 again show that the dis-
tributed approach is able to find solutions similar to
the all-in-one solutions for the first two cases, even
though only a local search algorithm is used. Case
3 shows a relatively larger difference with the all-in-
one solution, possibly caused by the non-convexity of
the problem. The convergence difficulties for this case
associated with ATC were not encountered for this
decomposition. The average coordination costs range
from around 60 to 120 subproblem optimizations, which
is similar to decomposed problem 1. Again, the general
trend is that the number of subproblem optimizations
increases as the number of design variables increases.
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4.5.3 Decomposition 3 with ALC-BS

To coordinate the third problem decomposition of
Fig. 9c, we use the ALC variant for block-dependent
constraints denoted ALC-BS (Tosserams et al. 2009a)
which introduces a master problem to coordinate the
coupling between the subsystems. The results for this
decomposition are depicted in Table 5. The obtained
solutions for all three cases are close to the all-in-
one results. The average coordination cost is around
60 subproblem optimizations for all but Case 1, which
requires an average of 102 subproblem optimizations.
In contrast to the previous two problem decomposi-
tions, no increasing trend in computational costs can be
observed for this decomposition.

4.5.4 Decomposition 4 with ALC-D

To coordinate the coupling through the linking vari-
ables as well as the coupling constraints for this fourth
problem decomposition (Fig. 9d), we use the distrib-
uted variant of the augmented Lagrangian coordination
approach which we denote by ALC-D (Tosserams et al.
2008). Linking variables are coordinated directly be-
tween subsystems, and no coordinating master problem
is introduced. We use an inexact inner loop, which
is required for the convergence proofs for ALC-D
with non-separable constraints. For the penalty para-
meter updates, we take β = 2.0 and γ = 0.5. We also
test an alternating direction approach for which no
convergence proof is available with β = 1.1 and γ =
0.9. Such an approach with a single iteration for each
inner loop has proven to be very efficient for other
augmented Lagrangian coordination algorithms. With

these additional experiments we investigate whether
such an approach is still useful in practice, although no
convergence proof is available.

The results presented in Table 6 show that the in-
exact version of ALC-D are able to find accurate solu-
tions for all cases. The alternating direction approach
finds optimal designs for the first two cases, while the
solutions for Case 3 are less accurate on average. The
solutions costs for the alternating direction version are
for some cases only a third of those for the inexact
version. The large difference once again illustrates the
computational advantages that can be gained by using
an alternating direction approach, provided that the
obtained solutions are accurate enough.

4.5.5 General observations for ALC

In general, the solutions obtained with ALC algorithms
for Cases 1 and 2 are all close to those obtained with the
all-in-one experiments. The solutions for Case 3 show
larger differences. What causes these differences is un-
known, but apparently ALC finds these cases harder to
coordinate, possibly due to the non-convexities.

The number of converged solutions is much higher
for the distributed optimization experiments than for
the all-in-one experiments. Where for all-in-one on av-
erage only 2 out of the 10 runs converged to a solution,
the ALC runs converged from almost all starting points.
The most likely explanation for these differences is the
fact that subproblems for ALC are restarted from a
perturbed starting point when their solution did not
converge. Although infrequent in practice, such restarts
are mainly observed for the first iteration suggesting
that poor initial designs are simply replaced by new

Table 6 Results for Decomposition 4 using ALC-D with an alternating direction and an inexact inner loop

Decomposition 4 with ALC-D
Alternating direction Inexact inner loop
Area in Iters Maximal Area in Iters Maximal
mm2 constraint mm2 constraint

Case 1 Min 0.1918 71 0.0000 0.1916 91 0.0000
100%–100% Mean 0.1929 84 0.0042 0.1922 197 0.0016
(0.1878) Max 0.1944 115 0.0118 0.1938 401 0.0122

Case 2 Min 0.0971 68 0.0001 0.0972 183 0.0000
100%–90% Mean 0.0997 79 0.0032 0.1000 322 0.0005
(0.0962) Max 0.1051 92 0.0098 0.1067 645 0.0020

Case 3 Min 0.0860 69 0.0001 0.0827 185 0.0000
100%–60% Mean 0.1147 87 0.0028 0.0990 349 0.0027
(0.0807) Max 0.3002 103 0.0101 0.1482 659 0.0131

For each case the percentage of converged starting points is indicated. Values between parenthesis are optimal areas in mm2 obtained
with the all-in-one formulation
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ones. The all-in-one implementation does not have such
a repairing ability, resulting in a smaller number of
converged runs.

The differences between problem decompositions
themselves are relatively small. The obtained solutions
are very similar, as well as the number of converged
solutions. Only Case 3 for the first problem decompo-
sition shows a significantly lower number of converged
runs. The coordination costs are similar for all decom-
positions, which is a little surprising, since the number
of linking variables and linking functions is different for
each decomposition. However, the results do not show
variations in computational costs.

5 Conclusions and discussion

This article presents a new multidisciplinary design
optimization (MDO) benchmark problem based on
the design of a micro-accelerometer. Analysis models
describe relevant aspects from mechanics, electrostat-
ics, dynamics, and electronics. The analysis models are
analytical, and therefore suitable for numerical opti-
mization algorithms. An area minimization problem is
defined to illustrate how these models can be used for
optimization purposes. Four design cases are formu-
lated, each with a different number of design variables.
Benchmark solutions are derived using a multi-start
sequential quadratic programming algorithm.

To illustrate how the models can be used for testing
MDO coordination algorithms, four different problem
decompositions are presented. Reference results for a
number of augmented Lagrangian coordination algo-
rithms are given, and show that these approaches are
able to find (near-)optimal designs by performing only
local optimization at the individual subsystems. Im-
provements are expected if a global search is performed
at the subproblems.

What makes this problem suitable for benchmark
purposes is its fully analytical and therefore repro-
ducible analysis models, the possibility to choose be-
tween different design cases, each with a different num-
ber of design variables ranging from seven continuous
variables to twenty continuous and two discrete vari-
ables. Furthermore, the problem is based on an existing
device, and can therefore be augmented with more de-
tailed, numerical modeling techniques. Such extensions
would improve the accuracy of the analysis, but would
also introduce additional practical aspects encountered
in MDO such as numerical noise, heterogenous com-
puting environments, and large differences between
solution times of subsystems.

The results for the numerical experiments indicate
that solving the problem in an all-in-one fashion with a
multistart algorithm is more efficient than the reference
distributed optimization approach ALC. Since coordi-
nation cost reduction is desired for any distributed op-
timization approach, researchers can use the problem
and the all-in-one reference results as a benchmark in
their research efforts to reduce the coordination cost
associated with distributed optimization. Directions for
improvements can be the use of different coordina-
tion or subproblem optimization algorithms, the use
of surrogate modeling techniques, or reformulating or
transforming the problem.

Besides the area minimization problems posed in
this article, other design problems such as sensitivity
maximization or noise minimization can easily be set
up. These alternative problem formulations use the
same models but may behave very different from a
numerical optimization and coordination perspective.
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Appendix: U-spring stiffness matrix analysis

We begin the analysis of the stiffness of a single U-
spring of Fig. 4a by constructing its assembled stiff-
ness matrix. This assembled stiffness Kass matrix is
constructed from the local stiffness matrices of each
beam. The local stiffness matrix Klocal relates the forces
f = [Xi, Yi, Mi, X j, Y j, Mj] to the displacements u =
[ui, vi, ϕi, u j, v j, ϕ j] through f = Klocalu, and is given by

Klocal =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA
L 0 0 − EA

L 0 0

0 12EI
L3

6EI
L2 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 − 6EI

L2
2EI

L

− EA
L 0 0 EA

L 0 0

0 − 12EI
L3 − 6EI

L2 0 12EI
L3 − 6EI

L2

0 6EI
L2

2EI
L 0 − 6EI

L2
4EI

L

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(79)

where E = 160 · 109 N/m2 is the modulus of elasticity
of polysilicon, A = hw is the cross section of the beam,
I = hw3/12 is the second moment of inertia of the
beam, and L is the beam length. See Fig. 4b for a
definition of the forces and displacements. For proper
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scaling of the elements of Klocal, we take μm as units
for all length-related quantities in (79) instead of the
more conventional meters.

To create the assembled stiffness matrix, the element
stiffness matrices have to be rotated from the local to
the global coordinate system. To this end, a rotation
matrix R = R(α) is used such that

Kglobal = RTKlocalR (80)

where the matrix R = R(α) is given by

R = R(α) =

⎡

⎢⎢⎢⎢⎢⎢⎣

cos(α) sin(α) 0 0 0 0
− sin(α) cos(α) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(α) sin(α) 0
0 0 0 − sin(α) cos(α) 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

(81)

The three beams and their rotation angles α (the
angle from the global x axis to the local x axis) are
defined in Table 7. The numbering of nodes may appear
cumbersome, but allows for more convenient notation.
Note that the spring softening contribution in the x
direction due to electrostatic forces is addressed at the
electrostatics subsystem.

To determine the assembled stiffness matrix Kass for
the whole structure, the local nodes are mapped to the
global nodes, and the rotated local stiffness matrices
are inserted at the appropriate places of the assembled
stiffness matrix Kass. To this end, a projection matrix
P[i] for beam i can be defined such that

Kass =
3∑

i=1

(P[i])TK[i]
globalP

[i] (82)

For beams 1, 2, and 3 the projection matrices are
given by

P[1] =
[

0 0 I 0
I 0 0 0

]
P[2] =

[
I 0 0 0
0 I 0 0

]
P[3] =

[
0 I 0 0
0 0 0 I

]

(83)

with I the 3 × 3 identity matrix and 0 a 3 × 3 zero
matrix.

Table 7 Beam definitions and rotation angles

Beam i j α Length L Width w

1 3 1 −π /2 lb1 wb

2 1 2 π lb2 wb2

3 2 4 π /2 lb3 wb

Computation of reaction forces

With the assembled stiffness matrix Kass defined, we are
now ready to derive the mechanical stiffness.

First, we consider the boundary conditions of the
spring. From the boundary conditions we know that
node 3 is clamped [u3, v3, ϕ3] = [0, 0, 0], node 4 is
subjected to forced displacements u4 = [u, v, ϕ], and
the reaction forces at nodes 1 and 2 are zero:
[X1, Y1, Z1] = [X2, Y2, Z2] = [0, 0, 0]. The displace-
ments [u1, v1, θ1] and [u2, v2, ϕ2], and reaction forces
at node 3 [X3, Y3, M3] and node 4 [F4, F4, M4] are
unknown.

To compute the unknown displacements and forces,
the displacement and force vectors are split up into
two parts: a known part (boundary conditions) and an
unknown part (free nodes), such that uass = [uT

free, uT
bc]T

and fass = [fT
bc, fT

free]T , where ufree = [u1, v1, ϕ1, u2,

v2, ϕ2]T , ubc = [u3, v3, ϕ3, u4, v4, ϕ4] = [0, 0, 0, u, v, ϕ]T ,
fbc = [X1, Y1, Z1, X2, Y2, Z2] = [0, 0, 0, 0, 0, 0]T , and
ffree = [X3, Y3, M3, X4, Y4, M4]T .

Under these conventions, the unknowns can be de-
termined from the system of equations Kassuass = fass,
which is given by
[

K11 K12

KT
12 K22

] [
ufree

ubc

]
=

[
fbc

ffree

]
(84)

where K11, K12, and K22 are 6 × 6 submatrices of the
assembled stiffness matrix Kass.

From this system, and because fbc = 0, the free dis-
placements are given by

ufree = K−1
11 (fbc − K12ubc) = −K−1

11 K12ubc (85)

The unknown reaction forces ffree = [X3, Y3, Z3,

X4, Y4, Z4]T are given by

ffree = KT
12ufree + K22ubc

= (K22 − KT
12K−1

11 K12)ubc = K̃ubc (86)

where K̃ = K22 − KT
12K−1

11 K12.
Let K̃33, K̃34, and K̃44 be 3×3 submatrices of K̃ such

that

K̃ =
[

K̃33 K̃34

K̃T
34 K̃44

]
(87)

Then since ubc = [0, 0, 0, u, v, ϕ], the reaction forces at
node 4 can be determined by
⎡

⎣
X4

Y4

M4

⎤

⎦ = K̃44

⎡

⎣
u
v

ϕ

⎤

⎦ =
⎡

⎣
Kx Kxy Kxϕ

Kxy Ky Kyϕ

Kxϕ Kyϕ Kϕ

⎤

⎦

⎡

⎣
u
v

ϕ

⎤

⎦ (88)

The elements of K̃44 can at this point be un-scaled to SI
units again.
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For a perfectly symmetrical structure the cross-axis
stiffness Kxy = 0. In practice, small variations of di-
mensions due to manufacturing introduce a non-zero
stiffness Kxy that initiate deflections in the x direction
due to accelerations in the y direction. For our analysis,
we will assume Kxy = 0.
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