78 research outputs found

    Distinctive character of electronic and vibrational coherences in disordered molecular aggregates

    Full text link
    Coherent dynamics of coupled molecules are effectively characterized by the two-dimensional (2D) electronic coherent spectroscopy. Depending on the coupling between electronic and vibrational states, oscillating signals of purely electronic, purely vibrational or mixed origin can be observed. Even in the "mixed" molecular systems two types of coherent beats having either electronic or vibrational character can be distinguished by analyzing oscillation Fourier maps, constructed from time-resolved 2D spectra. The amplitude of the beatings with the electronic character is heavily affected by the energetic disorder and consequently electronic coherences are quickly dephased. Beatings with the vibrational character depend weakly on the disorder, assuring their long-time survival. We show that detailed modeling of 2D spectroscopy signals of molecular aggregates providesdirect information on the origin of the coherent beatings.Comment: 7 pages, 4 figures, 1 tabl

    Theory of exciton-charge transfer state coupled systems

    Get PDF
    Abstract We present a systematic density matrix theory of excitons interacting with charge transfer states in molecular systems subject to influence of a semiclassical bath. An excitonic dimer interacting non-linearly with an overdamped Brownian oscillator bath is studied, and the effect of eigenstate renormalization by interaction with the bath is shown to be essential in a correct description of the unusual temperature dependence of the absorption spectrum of the exciton-charge transfer state system. Ó 2006 Published by Elsevier B.V. Intermolecular charge transfer (CT) states, which occur in molecular aggregates with close packing of their building blocks, can strongly influence their exciton spectral properties [4] and references therein). Considerable effort has been invested into developing suitable theoretical models based on exciton-CT (EX-CT) state mixing that would allow for correct descriptions of absorption, Stark, hole burning and transient spectra of these systems Consider a dimer composed of two molecules, A and B. The electronic states of such an aggregate include excited states jEX A ae and jEX B ae representing excitation localized on the molecules A and B, respectively, while the other molecule is in its electronic ground state. Linear combinations of the states jEX A ae and jEX B ae form the usual excitonic states of the aggregate. Further, such a complex may display CT states jCT A ae and jCT B ae denoting transitions of an electron from the local excitation on molecule A to the molecule B and from B to A, respectively. W

    Singlet-triplet annihilation in single LHCII complexes

    Get PDF
    In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching mechanism called singlet–triplet (S–T) annihilation that strongly depends on the excitation density. In this work we investigated the fluorescence decay kinetics of single immobilized LHCIIs at room temperature and found a two-exponential decay with a slow (3.5 ns) and a fast (35 ps) component. The relative amplitude fraction of the fast component increases with increasing excitation intensity, and the resulting decrease in the fluorescence quantum yield suggests annihilation effects. Modulation of the excitation pattern by means of an acousto-optic modulator (AOM) furthermore allowed us to resolve the time-dependent accumulation and decay rate (B7 ms) of the quenching species. Inspired by singlet–singlet (S–S) annihilation studies, we developed a stochastic model and then successfully applied it to describe and explain all the experimentally observed steady-state and time-dependent kinetics. That allowed us to distinctively identify the quenching mechanism as S–T annihilation. Quantitative fitting resulted in a conclusive set of parameters validating our interpretation of the experimental results. The obtained stochastic model can be generalized to describe S–T annihilation in small molecular aggregates where the equilibration time of excitations is much faster than the annihilation-free singlet excited state lifetime.VU University and by an Advanced Investigator grant from the European Research Council (no. 267333, PHOTPROT).Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Council of Chemical Sciences (NWO-CW) via a TOP-grant (700.58.305), and by the EU FP7 project PAPETS (GA 323901).Academy Professor grant from the Netherlands Royal Academy of Sciences (KNAW). University of Pretoria's Research Development Programme (Grant No.A0W679) Research Council of Lithuania (LMT grant no. MIP-080/2015).http://www.rsc.orgpccp2016-08-31hb201

    Fluorescence Microscopy of Single Liposomes with Incorporated Pigment-Proteins

    Get PDF
    Reconstitution of transmembrane proteins into liposomes is a widely used method to study their behavior under conditions closely resembling the natural ones. However, this approach does not allow precise control of the liposome size, reconstitution efficiency, and the actual protein-to-lipid ratio in the formed proteoliposomes, which might be critical for some applications and/or interpretation of data acquired during the spectroscopic measurements. Here, we present a novel strategy employing methods of proteoliposome preparation, fluorescent labeling, purification, and surface immobilization that allow us to quantify these properties using fluorescence microscopy at the singleliposome level and for the first time apply it to study photosynthetic pigment protein complexes LHCII. We show that LHCII proteoliposome samples, even after purification with a density gradient, always contain a fraction of nonreconstituted protein and are extremely heterogeneous in both protein density and liposome sizes. This strategy enables quantitative analysis of the reconstitution efficiency of different protocols and precise fluorescence spectroscopic study of various transmembrane proteins in a controlled nativelike environment

    Exciton Dynamics in Photosynthetic Complexes: Excitation by Coherent and Incoherent Light

    Full text link
    In this paper we consider dynamics of a molecular system subjected to external pumping by a light source. Within a completely quantum mechanical treatment, we derive a general formula, which enables to asses effects of different light properties on the photo-induced dynamics of a molecular system. We show that once the properties of light are known in terms of certain two-point correlation function, the only information needed to reconstruct the system dynamics is the reduced evolution superoperator. The later quantity is in principle accessible through ultrafast non-linear spectroscopy. Considering a direct excitation of a small molecular antenna by incoherent light we find that excitation of coherences is possible due to overlap of homogeneous line shapes associated with different excitonic states. In Markov and secular approximations, the amount of coherence is significant only under fast relaxation, and both the populations and coherences between exciton states become static at long time. We also study the case when the excitation of a photosynthetic complex is mediated by a mesoscopic system. We find that such case can be treated by the same formalism with a special correlation function characterizing ultrafast fluctuations of the mesoscopic system. We discuss bacterial chlorosom as an example of such a mesoscopic mediator and propose that the properties of energy transferring chromophore-protein complexes might be specially tuned for the fluctuation properties of their associated antennae.Comment: 12 page

    Molecular Adaptation of Photoprotection: Triplet States in Light-Harvesting Proteins

    Get PDF
    The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis

    >

    No full text
    corecore