69 research outputs found

    Caspase-8 deficiency in T cells leads to a lethal lymphoinfiltrative immune disorder

    Get PDF
    Caspase-8 is best known for its cell death function via death receptors. Recent evidence indicates that caspase-8 also has nonapoptotic functions. Caspase-8 deficiency is associated with pathologies that are unexpected for a proapoptotic molecule, such as abrogation of activation-induced lymphocyte proliferation, perturbed immune homeostasis, and immunodeficiency. In this study, we report the long-term physiological consequences of T cell–specific deletion of caspase-8 (tcasp8−/−). We show that tcasp8−/− mice develop an age-dependent lethal lymphoproliferative and lymphoinfiltrative immune disorder characterized by lymphoadenopathy, splenomegaly, and accumulation of T cell infiltrates in the lungs, liver, and kidneys. Peripheral casp8−/− T cells manifest activation marker up-regulation and are proliferating in the absence of any infection or stimulation. We also provide evidence suggesting that this immune disorder is different from the autoimmune lymphoproliferative syndrome. Interestingly, the condition described in tcasp8−/− mice manifests features consistent with the disorder described in humans with Caspase-8 deficiency. These findings suggest that tcasp8−/− mice may serve as an animal model to evaluate Caspase-8–deficient patient prognosis and therapy. Overall, our study uncovers novel in vivo functions for caspase-8 in immune regulation

    Cellular FLICE-inhibitory protein is required for T cell survival and cycling

    Get PDF
    Fas-associated death domain (FADD) and caspase-8 are key signal transducers for death receptor–induced apoptosis, whereas cellular FLICE-inhibitory protein (cFLIP) antagonizes this process. Interestingly, FADD and caspase-8 also play a role in T cell development and T cell receptor (TCR)–mediated proliferative responses. To investigate the underlying mechanism, we generated cFLIP-deficient T cells by reconstituting Rag−/− blastocysts with cFLIP-deficient embryonic stem cells. These Rag chimeric mutant mice (rcFLIP−/−) had severely reduced numbers of T cells in the thymus, lymph nodes, and spleen, although mature T lymphocytes did develop. Similar to FADD- or caspase-8–deficient cells, rcFLIP−/− T cells were impaired in proliferation in response to TCR stimulation. Further investigation revealed that cFLIP is required for T cell survival, as well as T cell cycling in response to TCR stimulation. Interestingly, some signaling pathways from the TCR complex appeared competent, as CD3 plus CD28 cross-linking was capable of activating the ERK pathway in rcFLIP−/− T cells. We demonstrate an essential role for cFLIP in T cell function

    Cellular FLICE-inhibitory protein is required for T cell survival and cycling

    Get PDF
    Fas-associated death domain (FADD) and caspase-8 are key signal transducers for death receptor–induced apoptosis, whereas cellular FLICE-inhibitory protein (cFLIP) antagonizes this process. Interestingly, FADD and caspase-8 also play a role in T cell development and T cell receptor (TCR)–mediated proliferative responses. To investigate the underlying mechanism, we generated cFLIP-deficient T cells by reconstituting Rag−/− blastocysts with cFLIP-deficient embryonic stem cells. These Rag chimeric mutant mice (rcFLIP−/−) had severely reduced numbers of T cells in the thymus, lymph nodes, and spleen, although mature T lymphocytes did develop. Similar to FADD- or caspase-8–deficient cells, rcFLIP−/− T cells were impaired in proliferation in response to TCR stimulation. Further investigation revealed that cFLIP is required for T cell survival, as well as T cell cycling in response to TCR stimulation. Interestingly, some signaling pathways from the TCR complex appeared competent, as CD3 plus CD28 cross-linking was capable of activating the ERK pathway in rcFLIP−/− T cells. We demonstrate an essential role for cFLIP in T cell function

    Role of Pirh2 in Mediating the Regulation of p53 and c-Myc

    Get PDF
    Ubiquitylation is fundamental for the regulation of the stability and function of p53 and c-Myc. The E3 ligase Pirh2 has been reported to polyubiquitylate p53 and to mediate its proteasomal degradation. Here, using Pirh2 deficient mice, we report that Pirh2 is important for the in vivo regulation of p53 stability in response to DNA damage. We also demonstrate that c-Myc is a novel interacting protein for Pirh2 and that Pirh2 mediates its polyubiquitylation and proteolysis. Pirh2 mutant mice display elevated levels of c-Myc and are predisposed for plasma cell hyperplasia and tumorigenesis. Consistent with the role p53 plays in suppressing c-Myc-induced oncogenesis, its deficiency exacerbates tumorigenesis of Pirh2−/− mice. We also report that low expression of human PIRH2 in lung, ovarian, and breast cancers correlates with decreased patients' survival. Collectively, our data reveal the in vivo roles of Pirh2 in the regulation of p53 and c-Myc stability and support its role as a tumor suppressor

    Neuronal Deletion of Caspase 8 Protects against Brain Injury in Mouse Models of Controlled Cortical Impact and Kainic Acid-Induced Excitotoxicity

    Get PDF
    system. mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging.Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional outcomes, suggesting an important role for this caspase in pathophysiology of acute brain trauma

    microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview

    No full text
    Up until the early 2000s, a functional role for microRNAs (miRNAs) was yet to be elucidated. With the advent of increasingly high-throughput and precise RNA-sequencing techniques within the last two decades, it has become well established that miRNAs can regulate almost all cellular processes through their ability to post-transcriptionally regulate a majority of protein-coding genes and countless other non-coding genes. In cancer, miRNAs have been demonstrated to play critical roles by modifying or controlling all major hallmarks including cell division, self-renewal, invasion, and DNA damage among others. Before the introduction of anthracyclines and cytarabine in the 1960s, acute myeloid leukemia (AML) was considered a fatal disease. In decades since, prognosis has improved substantially; however, long-term survival with AML remains poor. Resistance to chemotherapy, whether it is present at diagnosis or induced during treatment is a major therapeutic challenge in the treatment of this disease. Certain mechanisms such as DNA damage response and drug targeting, cell cycling, cell death, and drug trafficking pathways have been shown to be further dysregulated in treatment resistant cancers. miRNAs playing key roles in the emergence of these drug resistance phenotypes have recently emerged and replacement or inhibition of these miRNAs may be a viable treatment option. Herein, we describe the roles miRNAs can play in drug resistant AML and we describe miRNA-transcript interactions found within other cancer states which may be present within drug resistant AML. We describe the mechanisms of action of these miRNAs and how they can contribute to a poor overall survival and outcome as well. With the precision of miRNA mimic- or antagomir-based therapies, miRNAs provide an avenue for exquisite targeting in the therapy of drug resistant cancers

    The cell cycle-dependent regulation of DNA topoisomerase IIÃ expression is mediated by proteasomal degradation

    No full text
    grantor: University of TorontoDNA topoisomerase II (topo II) is a nuclear enzyme that modifies DNA topology and also serves as a target to mediate the cytotoxicity of several antineoplastic agents. Several reports demonstrate that a reduction of topo II is associated with reduced sensitivity to these agents. Topo II exists as two isoforms in mammalian cells, topo IIÃ and topo IIß. In the first part of this study, we examined the expression of topo II isoforms throughout the cell cycle. Western blot analysis of synchronized cell populations revealed that topo IIÃ levels fluctuate through the cell cycle with levels being low in G1, rising through the S-phase and reaching a peak at G 2/M, whereas topo IIß was relatively constant through all phases. Two-dimensional flow cytometric, analysis also demonstrated accumulation of topo IIÃ as cells progress from S to G2/M followed by a rapid decline in G1, once again with no change in topo IIß expression through the cell cycle. Accordingly, the hypothesis was formulated that degradation of topo IIÃ at the G2/M to G1 transition was mediated by the ubiquitin-proteasome pathway. (Abstract shortened by UMI.)M.Sc
    corecore