10 research outputs found

    Grapevine acidity: SVM tool development and NGS data analyses.

    Get PDF
    Single Nucleotide Polymorphisms (SNPs) represent the most abundant type of genetic variation and they are a valuable tool for several biological applications like linkage mapping, integration of genetic and physical maps, population genetics as well as evolutionary and protein structure-function studies. SNP genotyping by mapping DNA reads produced via Next generation sequencing (NGS) technologies on a reference genome is a very common and convenient approach in our days, but still prone to a significant error rate. The need of defining in silico true genetic variants in genomic and transcriptomic sequences is prompted by the high costs of the experimental validation through re-sequencing or SNP arrays, not only in terms of money but also time and sample availability. Several open-source tools have been recently developed to identify small variants in whole-genome data, but still the candidate variants, provided in the VCF output format, present a high false positive calling rate. Goal of this thesis work is the development of a bioinformatic method that classifies variant calling outputs in order to reduce the number of false positive calls. With the aim to dissect the molecular bases of grape acidity (Vitis vinifera L.), this tool has been then used to select SNPs in two grapevine varieties, which show very different content of organic acids in the berry. The VCF parameters have been used to train a Support Vector Machine (SVM) that classifies the VCF records in true and false positive variants, cleaning the output from the most likely false positive results. The SVM approach has been implemented in a new software, called VerySNP, and applied to model and non-model organisms. In both cases, the machine learning method efficiently recognized true positive from false positive variants in both genomic and transcriptomic sequences. In the second part of the thesis, VerySNP was applied to identify true SNPs in RNA-seq data of the grapevine variety Gora Chirine, characterized by low acidity, and Sultanine, a normal acidity variety closely related to Gora. The comparative transcriptomic analysis crossed with the SNP information lead to discover non-synonymous polymorphisms inside coding regions and, thus, provided a list of candidate genes potentially affecting acidity in grapevine

    531. Computational Pipeline for the Identification of Integration Sites and Novel Method for the Quantification of Clone Sizes in Clonal Tracking Studies

    Get PDF
    Gene-corrected cells in Gene Therapy (GT) treated patients can be tracked in vivo by means of vector integration site (IS) analysis, since each engineered clone becomes univocally and stably marked by an individual IS. As the proper IS identification and quantification is crucial to accurately perform clonal tracking studies, we designed a customizable and tailored pipeline to analyze LAM-PCR amplicons sequenced by Illumina MiSeq/HiSeq technology. The sequencing data are initially processed through a series of quality filters and cleaned from vector and Linker Cassette (LC) sequences with customizable settings. Demultiplexing is then performed according to the recognition of specific barcodes combination used upon library preparation and the sequences are aligned to the reference genome. Importantly, the human genome assembly Hg19 is composed of 93 contigs, among which the mitochondrial genome, unlocalized and unplaced contigs and some alternative haplotypes of chr6. While previous approaches aligned IS sequences only to the standard 24 human chromosomes, using the whole assembled genome allowed improving alignment accuracy and concomitantly increased the amount of detectable ISs. To date, we have processed 28 independent human sample sets retrieving 260,994 ISs from 189,270,566 sequencing reads. Although, sequencing read counts at each IS have been widely used to estimate the relative IS abundance, this method carries inherent accuracy constraints due to the rounds of exponential amplification required by LAM-PCR that might generate unbalances on the original clonal representation. More recently, a method based on genomic sonication has been proposed exploiting shear site counts to tag the number of original fragments belonging to each IS before PCR amplification. However, the number of cells composing a given clone could far exceed the number of fragments of different lengths that can be generated upon fragmentation in proximity of that given IS. This would rapidly saturate the available diversity of shear sites and progressively generate more and more same-site shearing on independent genomes. In order to overcome the described biases and reliably quantify ISs, we designed and tested a new LC encoding random barcodes. The new LC is composed of a known sequence of 29nt used as binding site for the primers upon amplification steps, a 6nt-random barcode, a fixed-anchor sequence of 6nt, a second 6nt-random barcode and a final known sequence of 22nt containing sticky ends for the three main restriction enzymes in use (MluI, HpyCH4IV and AciI). This peculiar design allowed increasing the accuracy of clonal diversity estimation since the fixed-anchor sequence acts as a control for sequencing reliability in the barcode area. The theoretical number of different available barcodes per clone (412=16,777,216) far exceeds the requirements for not saturating the original diversity of the analyzed sample (on average composed by around 50.000 cells). We validated this novel approach by performing assays on serial dilutions of individual clones carrying known ISs. The precision rate obtained was averagely around 99.3%, while the worst error rate reaches at most the 1.86%, confirming the reliability of IS quantification. We successfully applied the barcoded-LC system to the analysis of clinical samples from a Wiskott Aldrich Syndrome GT patient, collecting to date 50,215 barcoded ISs from 94,052,785 sequencing reads

    A QSP model of prostate cancer immunotherapy to identify effective combination therapies

    No full text
    Immunotherapy, by enhancing the endogenous anti-tumor immune responses, is showing promising results for the treatment of numerous cancers refractory to conventional therapies. However, its effectiveness for advanced castration-resistant prostate cancer remains unsatisfactory and new therapeutic strategies need to be developed. To this end, systems pharmacology modeling provides a quantitative framework to test in silico the efficacy of new treatments and combination therapies. In this paper we present a new Quantitative Systems Pharmacology (QSP) model of prostate cancer immunotherapy, calibrated using data from pre-clinical experiments in prostate cancer mouse models. We developed the model by using Ordinary Differential Equations (ODEs) describing the tumor, key components of the immune system, and seven treatments. Numerous combination therapies were evaluated considering both the degree of tumor inhibition and the predicted synergistic effects, integrated into a decision tree. Our simulations predicted cancer vaccine combined with immune checkpoint blockade as the most effective dual-drug combination immunotherapy for subjects treated with androgen-deprivation therapy that developed resistance. Overall, the model presented here serves as a computational framework to support drug development, by generating hypotheses that can be tested experimentally in pre-clinical models

    A network-based approach to identify deregulated pathways and drug effects in metabolic syndrome

    No full text
    Metabolic syndrome is a pathological condition characterized by obesity, hyperglycemia, hypertension, elevated levels of triglycerides and low levels of high-density lipoprotein cholesterol that increase cardiovascular disease risk and type 2 diabetes. Although numerous predisposing genetic risk factors have been identified, the biological mechanisms underlying this complex phenotype are not fully elucidated. Here we introduce a systems biology approach based on network analysis to investigate deregulated biological processes and subsequently identify drug repurposing candidates. A proximity score describing the interaction between drugs and pathways is defined by combining topological and functional similarities. The results of this computational framework highlight a prominent role of the immune system in metabolic syndrome and suggest a potential use of the BTK inhibitor ibrutinib as a novel pharmacological treatment. An experimental validation using a high fat diet-induced obesity model in zebrafish larvae shows the effectiveness of ibrutinib in lowering the inflammatory load due to macrophage accumulation

    Small supernumerary marker chromosomes: A legacy of trisomy rescue?

    Get PDF
    We studied by a whole genomic approach and trios genotyping, 12 de novo, nonrecurrent small supernumerary marker chromosomes (sSMC), detected as mosaics during pre- or postnatal diagnosis and associated with increased maternal age. Four sSMCs contained pericentromeric portions only, whereas eight had additional non-contiguous portions of the same chromosome, assembled together in a disordered fashion by repair-based mechanisms in a chromothriptic event. Maternal hetero/isodisomy was detected with a paternal origin of the sSMC in some cases, whereas in others two maternal alleles in the sSMC region and biparental haplotypes of the homologs were detected. In other cases, the homologs were biparental while the sSMC had the same haplotype of the maternally inherited chromosome. These findings strongly suggest that most sSMCs are the result of a multiple-step mechanism, initiated by maternal meiotic nondisjunction followed by postzygotic anaphase lagging of the supernumerary chromosome and its subsequent chromothripsis

    In Vivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases

    Get PDF
    Hematopoietic stem/progenitor cells (HSPCs) are capable of supporting the lifelong production of blood cells exerting a wide spectrum of functions. Lentiviral vector HSPC gene therapy generates a human hematopoietic system stably marked at the clonal level by vector integration sites (ISs). Using IS analysis, we longitudinally tracked >89,000 clones from 15 distinct bone marrow and peripheral blood lineages purified up to 4 years after transplant in four Wiskott-Aldrich syndrome patients treated with HSPC gene therapy. We measured at the clonal level repopulating waves, populations’ sizes and dynamics, activity of distinct HSPC subtypes, contribution of various progenitor classes during the early and late post-transplant phases, and hierarchical relationships among lineages. We discovered that in-vitro-manipulated HSPCs retain the ability to return to latency after transplant and can be physiologically reactivated, sustaining a stable hematopoietic output. This study constitutes in vivo comprehensive tracking in humans of hematopoietic clonal dynamics during the early and late post-transplant phases

    Preclinical Efficacy and Safety Evaluation of Hematopoietic Stem Cell Gene Therapy in a Mouse Model of MNGIE

    No full text
    Altres ajuts: The authors acknowledge the financial support for this study by Join4energy, Ride4Kids, the Sophia Foundation (SSW0645), Stichting NeMo, in the context of funding provided by the European Commission's 5th, 6th, and 7th Framework Programs(contracts QLK3-CT-2001-00427-INHERINET, LSHB-CT-2004-005242-CONSERT, LSHB-CT-2006-19038 Magselectofection, and grant agreements 222878-PERSIST and 261387 CELL-PID), and by the Netherlands Health Research and Development Organization ZonMw (Translational Gene Therapy program projects 43100016 and 43400010). We thank Dr. Michio Hirano (Department of Neurology, Columbia University Medical Center, New York, USA) for providing the murine model, Louis Boon (Epirus Biopharmaceuticals, Utrecht, the Netherlands) for kindly providing anti-B220 antibody, Prof. Peter A.E. Sillevis Smitt (Department of Neurology, Erasmus MC, Rotterdam, the Netherlands), Pier.G. Mastroberardino and Chiara Milanese (Department of Molecular Genetics, Erasmus MC), Kees Schoonderwoerd (Department of Clinical Genetics, Erasmus MC), and Jeroen de Vrij (Department of Neurosurgery, Erasmus MC) for valuable discussions, Lidia Hussaarts (Department of Clinical Genetics, Erasmus MC) for technical support, King Lam (Department of Pathology, Erasmus MC) for pathology evaluation, and F. Dionisio and A. Aiuti from HSR-TIGET, Milan, for the support to the integration site analysis.Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by thymidine phosphorylase (TP) deficiency resulting in systemic accumulation of thymidine (d-Thd) and deoxyuridine (d-Urd) and characterized by early-onset neurological and gastrointestinal symptoms. Long-term effective and safe treatment is not available. Allogeneic bone marrow transplantation may improve clinical manifestations but carries disease and transplant-related risks. In this study, lentiviral vector-based hematopoietic stem cell gene therapy (HSCGT) was performed in Tymp −/− Upp1 −/− mice with the human phosphoglycerate kinase (PGK) promoter driving TYMP. Supranormal blood TP activity reduced intestinal nucleoside levels significantly at low vector copy number (median, 1.3; range, 0.2-3.6). Furthermore, we covered two major issues not addressed before. First, we demonstrate aberrant morphology of brain astrocytes in areas of spongy degeneration, which was reversed by HSCGT. Second, long-term follow-up and vector integration site analysis were performed to assess safety of the therapeutic LV vectors in depth. This report confirms and supplements previous work on the efficacy of HSCGT in reducing the toxic metabolites in Tymp −/− Upp1 −/− mice, using a clinically applicable gene transfer vector and a highly efficient gene transfer method, and importantly demonstrates phenotypic correction with a favorable risk profile, warranting further development toward clinical implementation
    corecore