610 research outputs found

    Gene structure of the human receptor tyrosine kinase Ron and mutation analysis in lung cancer samples.

    Get PDF

    Characterization of the RNA-interference pathway as a tool for reverse genetic analysis in the nascent phototrophic endosymbiosis, Paramecium bursaria

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this recordData accessibility The raw reads generated during transcriptome and sRNA sequencing are available on the NCBI Sequence Read Archive (accessions: SAMN14932981, SAMN14932982). All other datasets are available on Figshare (https://doi.org/10.6084/m9.figshare.c.5241983.v1), under the relevant headings. Custom scripts for host and endosymbiont transcript binning [80] (https://github.com/fmaguire/dendrogenous, https://doi.org/10.5281/zenodo.4639294) and sRNA read processing [81] (https://github.com/guyleonard/paramecium, https://doi.org/10.5281/zenodo.4638888) are available on GitHub and archived within the Zenodo repository.Endosymbiosis was fundamental for the evolution of eukaryotic complexity. Endosymbiotic interactions can be dissected through forward- and reverse-genetic experiments, such as RNA-interference (RNAi). However, distinguishing small (s)RNA pathways in a eukaryote-eukaryote endosymbiotic interaction is challenging. Here, we investigate the repertoire of RNAi pathway protein-encoding genes in the model nascent endosymbiotic system, Paramecium bursaria-Chlorella spp. Using comparative genomics and transcriptomics supported by phylogenetics, we identify essential proteome components of the small interfering (si)RNA, scan (scn)RNA and internal eliminated sequence (ies)RNA pathways. Our analyses reveal that copies of these components have been retained throughout successive whole genome duplication (WGD) events in the Paramecium clade. We validate feeding-induced siRNA-based RNAi in P. bursaria via knock-down of the splicing factor, u2af1, which we show to be crucial to host growth. Finally, using simultaneous knock-down 'paradox' controls to rescue the effect of u2af1 knock-down, we demonstrate that feeding-induced RNAi in P. bursaria is dependent upon a core pathway of host-encoded Dcr1, Piwi and Pds1 components. Our experiments confirm the presence of a functional, host-derived RNAi pathway in P. bursaria that generates 23-nt siRNA, validating the use of the P. bursaria-Chlorella spp. system to investigate the genetic basis of a nascent endosymbiosis.EMBORoyal SocietyEuropean Research Council (ERC)Wellcome TrustLister institut

    Emergent RNA–RNA interactions can promote stability in a facultative phototrophic endosymbiosis

    Get PDF
    This is the final version. Available on open access from the National Academy of Sciences via the DOI in this recordData Availability: The sequence data, code, and datasets have been deposited in NCBI Sequence Read Archive, GitHub, Figshare, and Zenodo. The raw reads generated during sRNA sequencing are available on the NCBI Sequence Read Archive (accession numbers SAMN14932981 and SAMN14932982). All other datasets are available on Figshare (https://doi.org/10.6084/m9.figshare.c.4978160.v3) under the relevant headings (77). Custom scripts for sRNA read processing (https://github.com/guyleonard/paramecium, https://doi.org/10.5281/zenodo.4638888) and eDicer comparative analysis (https://github.com/fmaguire/eDicer, https://doi.org/10.5281/zenodo.4659378) are available on GitHub and archived within the Zenodo repository.Eukaryote–eukaryote endosymbiosis was responsible for the spread of chloroplast (plastid) organelles. Stability is required for the metabolic and genetic integration that drives the establishment of new organelles, yet the mechanisms that act to stabilize emergent endosymbioses—between two fundamentally selfish biological organisms—are unclear. Theory suggests that enforcement mechanisms, which punish misbehavior, may act to stabilize such interactions by resolving conflict. However, how such mechanisms can emerge in a facultative endosymbiosis has yet to be explored. Here, we propose that endosymbiont–host RNA–RNA interactions, arising from digestion of the endosymbiont population, can result in a cost to host growth for breakdown of the endosymbiosis. Using the model facultative endosymbiosis between Paramecium bursaria and Chlorella spp., we demonstrate that this mechanism is dependent on the host RNA-interference (RNAi) system. We reveal through small RNA (sRNA) sequencing that endosymbiont-derived messenger RNA (mRNA) released upon endosymbiont digestion can be processed by the host RNAi system into 23-nt sRNA. We predict multiple regions of shared sequence identity between endosymbiont and host mRNA, and demonstrate through delivery of synthetic endosymbiont sRNA that exposure to these regions can knock down expression of complementary host genes, resulting in a cost to host growth. This process of host gene knockdown in response to endosymbiont-derived RNA processing by host RNAi factors, which we term “RNAi collisions,” represents a mechanism that can promote stability in a facultative eukaryote–eukaryote endosymbiosis. Specifically, by imposing a cost for breakdown of the endosymbiosis, endosymbiont–host RNA–RNA interactions may drive maintenance of the symbiosis across fluctuating ecological conditions.European Molecular Biology OrganizationRoyal SocietyEuropean Research Council (ERC)Wellcome TrustLister InstituteDonald Hill Family Fellowshi

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    Lipidomics Reveals Early Metabolic Changes in Subjects with Schizophrenia: Effects of Atypical Antipsychotics

    Get PDF
    There is a critical need for mapping early metabolic changes in schizophrenia to capture failures in regulation of biochemical pathways and networks. This information could provide valuable insights about disease mechanisms, trajectory of disease progression, and diagnostic biomarkers. We used a lipidomics platform to measure individual lipid species in 20 drug-naïve patients with a first episode of schizophrenia (FE group), 20 patients with chronic schizophrenia that had not adhered to prescribed medications (RE group), and 29 race-matched control subjects without schizophrenia. Lipid metabolic profiles were evaluated and compared between study groups and within groups before and after treatment with atypical antipsychotics, risperidone and aripiprazole. Finally, we mapped lipid profiles to n3 and n6 fatty acid synthesis pathways to elucidate which enzymes might be affected by disease and treatment. Compared to controls, the FE group showed significant down-regulation of several n3 polyunsaturated fatty acids (PUFAs), including 20:5n3, 22:5n3, and 22:6n3 within the phosphatidylcholine and phosphatidylethanolamine lipid classes. Differences between FE and controls were only observed in the n3 class PUFAs; no differences where noted in n6 class PUFAs. The RE group was not significantly different from controls, although some compositional differences within PUFAs were noted. Drug treatment was able to correct the aberrant PUFA levels noted in FE patients, but changes in re patients were not corrective. Treatment caused increases in both n3 and n6 class lipids. These results supported the hypothesis that phospholipid n3 fatty acid deficits are present early in the course of schizophrenia and tend not to persist throughout its course. These changes in lipid metabolism could indicate a metabolic vulnerability in patients with schizophrenia that occurs early in development of the disease. © 2013 McEvoy et al

    Unemployment and ill health: a connection through inflammation?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unemployment is a source of acute and long-term psychosocial stress. Acute and chronic psychosocial stress can induce pronounced changes in human immune responses. In this study we tested our hypothesis that stress-induced low-grade tissue inflammation is more prevalent among the unemployed.</p> <p>Methods</p> <p>We determined the inflammatory status of 225 general population subjects below the general retirement age (65 years in Finland). Those who had levels of both interleukin-6 (≥ 0.97 pg/mL) and high-sensitivity C-reactive protein (≥ 1.49 mg/L) above the median were assessed to have an elevated inflammatory status (n = 72).</p> <p>Results</p> <p>An elevated inflammatory status was more common among the unemployed than among other study participants (59% versus 30%, p = 0.011). In the final multivariate model, those who were unemployed had over five-fold greater odds for having an elevated inflammatory status (OR 5.20, 95% CI 1.55-17.43, p = 0.008).</p> <p>Conclusion</p> <p>This preliminary finding suggests that stress-induced low-grade inflammation might be a link between unemployment and ill health.</p

    The Berkeley sample of Type II supernovae: BVRI light curves and spectroscopy of 55 SNe II

    Get PDF
    In this work, BVRI light curves of 55 Type II supernovae (SNe II) from the Lick Observatory Supernova Search programme obtained with the Katzman Automatic Imaging Telescope and the 1 m Nickel telescope from 2006 to 2018 are presented. Additionally, more than 150 spectra gathered with the 3 m Shane telescope are published. We conduct an analyse of the peak absolute magnitudes, decline rates, and time durations of different phases of the light and colour curves. Typically, our light curves are sampled with a median cadence of 5.5 d for a total of 5093 photometric points. In average, V-band plateau declines with a rate of 1.29 mag (100 d)−1, which is consistent with previously published samples. For each band, the plateau slope correlates with the plateau length and the absolute peak magnitude: SNe II with steeper decline have shorter plateau duration and are brighter. A time-evolution analysis of spectral lines in term of velocities and pseudo-equivalent widths is also presented in this paper. Our spectroscopic sample ranges between 1 and 200 d post-explosion and has a median ejecta expansion velocity at 50 d post-explosion of 6500 km s−1 (H α line) and a standard dispersion of 2000 km s−1. Nebular spectra are in good agreement with theoretical models using a progenitor star having a mass <16M⊙. All the data are available to the community and will help to understand SN II diversity better, and therefore to improve their utility as cosmological distance indicators

    Variation in 5-hydroxymethylcytosine across human cortex and cerebellum

    Get PDF
    Background: The most widely utilized approaches for quantifying DNA methylation involve the treatment of genomic DNA with sodium bisulfite; however, this method cannot distinguish between 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Previous studies have shown that 5hmC is enriched in the brain, although little is known about its genomic distribution and how it differs between anatomical regions and individuals. In this study, we combine oxidative bisulfite (oxBS) treatment with the Illumina Infinium 450K BeadArray to quantify genome-wide patterns of 5hmC in two distinct anatomical regions of the brain from multiple individuals. Results: We identify 37,145 and 65,563 sites passing our threshold for detectable 5hmC in the prefrontal cortex and cerebellum respectively, with 23,445 loci common across both brain regions. Distinct patterns of 5hmC are identified in each brain region, with notable differences in the genomic location of the most hydroxymethylated loci between these brain regions. Tissue-specific patterns of 5hmC are subsequently confirmed in an independent set of prefrontal cortex and cerebellum samples. Conclusions: This study represents the first systematic analysis of 5hmC in the human brain, identifying tissue-specific hydroxymethylated positions and genomic regions characterized by inter-individual variation in DNA hydroxymethylation. This study demonstrates the utility of combining oxBS-treatment with the Illumina 450k methylation array to systematically quantify 5hmC across the genome and the potential utility of this approach for epigenomic studies of brain disorders
    corecore