76 research outputs found

    Energy expenditure in chow-fed female non-human primates of various weights

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until now no technology has been available to study energy metabolism in monkeys. The objective of this study was to determine daily energy expenditures (EE) and respiratory quotients (RQ) in female monkeys of various body weights and ages.</p> <p>Methods</p> <p>16 socially reared Bonnet Macaque female monkeys [5.5 ± 1.4 kg body weight, modified BMI (length measurement from head to base of the tail) = 28.8 ± 6.7 kg/crown-rump length, m<sup>2 </sup>and 11.7 ± 4.6 years] were placed in the primate Enhanced Metabolic Testing Activity Chamber (Model 3000a, EMTAC Inc. Santa Barbara, CA) for 22-hour measurements of EE (kcal/kg) and RQ (VCO<sub>2</sub>/VO<sub>2</sub>). All were fed monkey chow (4.03 kcal/g) ad-libitum under a 12/12 hour light/dark cycle. Metabolic data were corrected for differences in body weight. Results were divided into day (8-hours), dark (12 hours) and morning (2-hours) periods. Data analysis was conducted utilizing SPSS (Version 13).</p> <p>Results</p> <p>Modified BMI negatively correlated with 22-hour energy expenditure in all monkeys (r = -0.80, p < 0.01). The large variability of daily energy intake (4.5 to 102.0 kcal/kg) necessitated division into two groups, non-eaters (< 13 kcal/kg) and eaters (> 23 kcal/kg). There were reductions (p < 0.05) in both 22-hour and dark period RQs in the "non-eaters" in comparison to those who were "eaters". Monkeys were also classified as "lean" (modified BMI < 25) or "obese" (modified BMI > 30). The obese group had lower EE (p < 0.05) during each time period and over the entire 22-hours (p < 0.05), in comparison to their lean counterparts.</p> <p>Conclusion</p> <p>The EMTAC proved to be a valuable tool for metabolic measurements in monkeys. The accuracy and sensitivity of the instrument allowed detection of subtle metabolic changes in relation to energy intake. Moreover, there is an association between a reduction of energy expenditure and a gain in body weight.</p

    Characterization of Arterial Wave Reflection in Healthy Bonnet Macaques: Feasibility of Applanation Tonometry

    Get PDF
    Nonhuman primates are commonly used in cardiovascular research. Increased arterial stiffness is a marker of subclinical atherosclerosis and higher CV risk. We determined the augmentation index (AI) using applanation tonometry in 61 healthy monkeys (59% female, age 1–25 years). Technically adequate studies were obtained in all subjects and required 1.5 ± 1.3 minutes. The brachial artery provided the highest yield (95%). AI was correlated with heart rate (HR) (r = −0.65, P < .001), crown rump length (CRL) (r = 0.42, P = .001), and left ventricular (LV) mass determined using echocardiography (r = 0.52, P < .001). On multivariate analysis, HR (P < .001) and CRL (P = .005) were independent predictors of AI (R2 = 0.46, P < .001). Body Mass Index (BMI) and AI were independent predictors of higher LV mass on multivariate analysis (P < .001 and P = .03). In conclusion, applanation tonometry is feasible for determining AI. Reference values are provided for AI in bonnet macaques, in whom higher AI is related to HR and CRL, and in turn contributes to higher LV mass

    Correlations between Hippocampal Neurogenesis and Metabolic Indices in Adult Nonhuman Primates

    Get PDF
    Increased neurogenesis in feeding centers of the murine hypothalamus is associated with weight loss in diet-induced obese rodents (Kokoeva et al., 2005 and Matrisciano et al., 2010), but this relationship has not been examined in other species. Postmortem hippocampal neurogenesis rates and premortem metabolic parameters were statistically analyzed in 8 chow-fed colony-reared adult bonnet macaques. Dentate gyrus neurogenesis, reflected by the immature neuronal marker, doublecortin (DCX), and expression of the antiapoptotic gene factor, B-cell lymphoma 2 (BCL-2), but not the precursor proliferation mitotic marker, Ki67, was inversely correlated with body weight and crown-rump length. DCX and BCL-2 each correlated positively with blood glucose level and lipid ratio (total cholesterol/high-density lipoprotein). This study demonstrates that markers of dentate gyrus neuroplasticity correlate with metabolic parameters in primates

    Maternal hypothalamic-pituitary-adrenal axis response to foraging uncertainty: A model of individual vs. social allostasis and the Superorganism Hypothesis

    Full text link
    Introduction: Food insecurity is a major global contributor to developmental origins of adult disease. The allostatic load of maternal food uncertainty from variable foraging demand (VFD) activates corticotropin-releasing factor (CRF) without eliciting hypothalamic-pituitary-adrenal (HPA) activation measured on a group level. Individual homeostatic adaptations of the HPA axis may subserve second-order homeostasis, a process we provisionally term “social allostasis.” We postulate that maternal food insecurity induces a “superorganism” state through coordination of individual HPA axis response. Methods: Twenty-four socially-housed bonnet macaque maternal-infant dyads were exposed to 16 weeks of alternating two-week epochs of low or high foraging demand shown to compromise normative maternal-infant rearing. Cerebrospinal fluid (CSF) CRF concentrations and plasma cortisol were measured pre- and post-VFD. Dyadic distance was measured, and blinded observers performed pre-VFD social ranking assessments. Results: Despite marked individual cortisol responses (mean change = 20%) there was an absence of maternal HPA axis group mean response to VFD (0%). Whereas individual CSF CRF concentrations change = 56%, group mean did increase 25% (p = 0.002). Our dyadic vulnerability index (low infant weight, low maternal weight, subordinate maternal social status and reduced dyadic distance) predicted maternal cortisol decreases (p \u3c 0.0001) whereas relatively “advantaged” dyads exhibited maternal cortisol increases in response to VFD exposure. Comment: In response to a chronic stressor, relative dyadic vulnerability plays a significant role in determining the directionality and magnitude of individual maternal HPA axis responses in the service of maintaining a “superorganism” version of HPA axis homeostasis, provisionally termed “social allostasis.

    Vitamin D status is inversely associated with markers of risk for type 2 diabetes: A population based study in Victoria, Australia

    Get PDF
    A growing body of evidence suggests a protective role of Vitamin D on the risk of type 2 diabetes mellitus (T2DM). We investigated this relationship in a population sample from one Australian state. The data of 3,393 Australian adults aged 18±75 years who participated in the 2009±2010 Victorian Health Monitor survey was analyzed. Socio-demographic information, biomedical variables, and dietary intakes were collected and fasting blood samples were analyzed for 25, hydroxycholecalciferol (25OHD), HbA1c, fasting plasma glucose (FPG), and lipid profiles. Logistic regression analyses were used to evaluate the association between tertiles of serum 25OHD and categories of FPG (&lt;5.6 mmol/L vs. 5.6±6.9 mmol/L), and HbA1c (&lt;5.7% vs. 5.7±6.4%). After adjusting for social, dietary, biomedical and metabolic syndrome (MetS) components (waist circumference, HDL cholesterol, triglycerides, and blood pressure), every 10 nmol/L increment in serum 25OHD significantly reduced the adjusted odds ratio (AOR) of a higher FPG [AOR 0.91, (0.86, 0.97); p = 0.002] and a higher HbA1c [AOR 0.94, (0.90, 0.98); p = 0.009]. Analysis by tertiles of 25OHD indicated that after adjustment for socio-demographic and dietary variables, those with high 25OHD (65±204 nmol/L) had reduced odds of a higher FPG [AOR 0.60, (0.43, 0.83); p = 0.008] as well as higher HbA1c [AOR 0.67, (0.53, 0.85); p = 0.005] compared to the lowest 25OHD (10±44 nmol/L) tertile. On final adjustment for other components of MetS, those in the highest tertile of 25OHD had significantly reduced odds of higher FPG [AOR 0.61, (0.44, 0.84); p = 0.011] and of higher HbA1c [AOR 0.74, (0.58, 0.93); p = 0.041] vs. low 25OHD tertile. Overall, the data support a direct, protective effect of higher 25OHD on FPG and HbA1c; two criteria for assessment of risk of T2DM

    Edible bio-based nanostructures: delivery, absorption and potential toxicity

    Get PDF
    The development of bio-based nanostructures as nanocarriers of bioactive compounds to specific body sites has been presented as a hot topic in food, pharmaceutical and nanotechnology fields. Food and pharmaceutical industries seek to explore the huge potential of these nanostructures, once they can be entirely composed of biocompatible and non-toxic materials. At the same time, they allow the incorporation of lipophilic and hydrophilic bioactive compounds protecting them against degradation, maintaining its active and functional performance. Nevertheless, the physicochemical properties of such structures (e.g., size and charge) could change significantly their behavior in the gastrointestinal (GI) tract. The main challenges in the development of these nanostructures are the proper characterization and understanding of the processes occurring at their surface, when in contact with living systems. This is crucial to understand their delivery and absorption behavior as well as to recognize potential toxicological effects. This review will provide an insight into the recent innovations and challenges in the field of delivery via GI tract using bio-based nanostructures. Also, an overview of the approaches followed to ensure an effective deliver (e.g., avoiding physiological barriers) and to enhance stability and absorptive intestinal uptake of bioactive compounds will be provided. Information about nanostructures potential toxicity and a concise description of the in vitro and in vivo toxicity studies will also be given.Joana T. Martins, Oscar L. Ramos, Ana C. Pinheiro, Ana I. Bourbon, Helder D. Silva and Miguel A. Cerqueira (SFRH/BPD/89992/2012, SFRH/BPD/80766/2011, SFRH/BPD/101181/2014, SFRH/BD/73178/2010, SFRH/BD/81288/2011, and SFRH/BPD/72753/2010, respectively) are the recipients of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE, Portugal). The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes," REF.NORTE-07-0124-FEDER-000028, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. We also thank to the European Commission: BIOCAPS (316265, FP7/REGPOT-2012-2013.1) and Xunta de Galicia: Agrupamento INBIOMED (2012/273) and Grupo con potencial de crecimiento. The support of EU Cost Action FA1001 is gratefully acknowledged

    Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Get PDF
    Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases

    Therapeutic application of T regulatory cells in composite tissue allotransplantation

    Full text link
    corecore