13 research outputs found

    Estimated abundances of cetacean species in the Northeast Atlantic from Norwegian shipboard surveys conducted in 2014-2018

    Get PDF
    A ship-based mosaic survey of Northeast Atlantic cetaceans was conducted over a 5-year period between 2014–2018. The area surveyed extends from the North Sea in the south (southern boundary at 53oN), to the ice edge of the Barents Sea and the Greenland Sea. Survey vessels were equipped with 2 independent observer platforms that detected whales in passing mode and applied tracking procedures for the target species, common minke whales (Balaenoptera acutorostrata acutorostrata). Here we present abundance estimates for all non-target species for which there were sufficient sightings. We estimate the abundance of fin whales (Balaenoptera physalus) to be 11,387 (CV=0.17, 95% CI: 8,072–16,063), of humpback whales (Megaptera novaeangliae) to be 10,708 (CV=0.38, 95% CI: 4,906–23,370), of sperm whales (Physeter macrocephalus) to be 5,704 (CV=0.26, 95% CI: 3,374–9,643), of killer whales (Orcinus orca) to be 15,056 (CV=0.29, 95% CI: 8,423–26,914), of harbour porpoises (Phocoena phocoena) to be 255,929 (CV=0.20, 95% CI: 172,742–379,175), dolphins of genus Lagenorhynchus to be 192,767 (CV=0.25, 95% CI: 114,033–325,863), and finally of northern bottlenose whales (Hyperoodon ampullatus) to be 7,800 (CV=0.28, 95% CI: 4,373–13,913). Additionally, our survey effort in the Norwegian Sea in 2015 contributed to the 6th North Atlantic Sightings Survey (NASS) and the survey was extended into the waters north and east of Iceland around Jan Mayen island. This NASS extension, along with our Norwegian Sea survey in 2015, was used to estimate the abundance of fin whales, humpback whales, and sperm whales. All estimates presented used mark-recapture distance sampling techniques and were thus corrected for perception bias. Our estimates do not account for additional variance due to distributional shifts between years or biases due to availability or responsive movement.publishedVersio

    Estimated abundances of cetacean species in the Northeast Atlantic from two multiyear surveys conducted by Norwegian vessels between 2002-2013

    Get PDF
    Two shipboard line-transect surveys of the Northeast Atlantic were conducted between 2002–2007 and 2008–2013 to meet the ongoing requirements of the Revised Management Procedure (RMP) for common minke whales (Balaenoptera acutorostrata acutorostrata) developed by the International Whaling Commission’s Scientific Committee. Here we present estimated abundances for non-target species for which there were sufficient sightings, including fin whales (Balaenoptera physalus), humpback whales (Megaptera novaeangliae), sperm whales (Physeter macrocephalus), killer whales (Orcinus orca), harbour porpoises (Phocoena phocoena), and dolphins of genus Lagenorhynchus. The 2 surveys were conducted using a multiyear mosaic survey design with 2 independent observer platforms operating in passing mode, each with 2 observers. The abundances of Lagenorhynchus spp. from the 2002–2007 survey were estimated using single-platform standard distance sampling methods because of uncertainty in identifying duplicate sightings. All other estimates were derived using mark-recapture distance sampling techniques applied to a combined-platform dataset of observations, correcting for perception bias. Most notably, we find that the abundance of humpback whales, similar in both survey periods, has doubled since the 1990s with the most striking changes occurring in the Barents Sea. We also show that the pattern in distribution and abundance of fin whales and sperm whales is consistent with our earlier surveys, and that abundances of small odontocete species, which were not estimated in earlier surveys, show stable distributions with some variation in their estimates. Our estimates do not account for distributional shifts between years or correct for biases due to availability or responsive movement.publishedVersio

    Panel-based Assessment of Ecosystem Condition of Norwegian Barents Sea Shelf Ecosystems

    Get PDF
    The System for Assessment of Ecological Condition, coordinated by the Norwegian Environment Agency, is intended to form the foundation for evidence-based assessments of the ecological condition of Norwegian terrestrial and marine ecosystems not covered by the EU Water Framework Directive. The reference condition is defined as “intact ecosystems”, i.e., a condition that is largely unimpacted by modern industrial anthropogenic activities. An ecosystem in good ecological condition is defined as a system that does not deviate substantially from this reference condition in structure, functions or productivity. This means that, in practice, what is assessed here is the extent to which an ecosystem is impacted by anthropogenic drivers. This report describes the first operational assessment of the ecological condition of Norwegian Arctic and Sub-Arctic marine shelf ecosystems in the Barents Sea. The assessment method employed is the Panel-based Assessment of Ecosystem Condition (PAEC1), and the current assessment has considered to what extent the Barents Sea shelf ecosystems deviate from the reference condition2 by evaluating change trajectories

    Panel-based Assessment of Ecosystem Condition of Norwegian Barents Sea Shelf Ecosystems

    Get PDF
    The System for Assessment of Ecological Condition, coordinated by the Norwegian Environment Agency, is intended to form the foundation for evidence-based assessments of the ecological condition of Norwegian terrestrial and marine ecosystems not covered by the EU Water Framework Directive. The reference condition is defined as “intact ecosystems”, i.e., a condition that is largely unimpacted by modern industrial anthropogenic activities. An ecosystem in good ecological condition is defined as a system that does not deviate substantially from this reference condition in structure, functions or productivity. This means that, in practice, what is assessed here is the extent to which an ecosystem is impacted by anthropogenic drivers. This report describes the first operational assessment of the ecological condition of Norwegian Arctic and Sub-Arctic marine shelf ecosystems in the Barents Sea. The assessment method employed is the Panel-based Assessment of Ecosystem Condition (PAEC1), and the current assessment has considered to what extent the Barents Sea shelf ecosystems deviate from the reference condition2 by evaluating change trajectories.Panel-based Assessment of Ecosystem Condition of Norwegian Barents Sea Shelf EcosystemspublishedVersio

    Status for miljøet i norske havområder - Rapport fra Overvåkingsgruppen 2023

    Get PDF
    I denne rapporten gir Overvåkingsgruppen, for første gang, en felles vurdering av miljøtilstanden i Barentshavet og havområdene utenfor Lofoten, Norskehavet og Nordsjøen med Skagerrak. Det er også første rapport som bruker resultater fra det nylig utviklede fagsystemet for vurdering av økologisk tilstand. I denne rapporten dekkes to hovedtemaer: (1) Dominerende trekk i status og utvikling i økosystemet i alle tre havområdene, basert på vurderingene av økologisk tilstand, Overvåkingsgruppens rapport om forurensning fra 2022, indikatorer fra Overvåkingsgruppen som ikke er dekket under vurdering av økologisk tilstand, samt rapporter og annen relevant informasjon fra forskning, og (2) en vurdering av karbonbinding i marint plankton, marine vegetasjonstyper og marine sedimenter. I tillegg er det gitt en oppsummering for endringer i ytre påvirkning, vurdering av kunnskapsbehov samt en vurdering av indikatorverdier i forhold til referanseverdier og tiltaksgrenser. Vurderingen av dominerende trekk i utvikling og tilstand av miljøet som er gitt i kapittel 2, utgjør Overvåkingsgruppens bidrag til Faglig forums samlerapport om det faglige grunnlaget for revisjon og oppdatering av de helhetlige forvaltningsplanene for norske havområder.Status for miljøet i norske havområder - Rapport fra Overvåkingsgruppen 2023publishedVersio

    Expression quantitative trait locus fine mapping of the 17q12–21 asthma locus in African American children: a genetic association and gene expression study

    No full text
    Background: African ancestry is associated with a higher prevalence and greater severity of asthma than European ancestries, yet genetic studies of the most common locus associated with childhood-onset asthma, 17q12–21, in African Americans have been inconclusive. The aim of this study was to leverage both the phenotyping of the Children's Respiratory and Environmental Workgroup (CREW) birth cohort consortium, and the reduced linkage disequilibrium in African Americans, to fine map the 17q12–21 locus. Methods: We first did a genetic association study and meta-analysis using 17q12–21 tag single-nucleotide polymorphisms (SNPs) for childhood-onset asthma in 1613 European American and 870 African American children from the CREW consortium. Nine tag SNPs were selected based on linkage disequilibrium patterns at 17q12–21 and their association with asthma, considering the effect allele under an additive model (0, 1, or 2 effect alleles). Results were meta-analysed with publicly available summary data from the EVE consortium (on 4303 European American and 3034 African American individuals) for seven of the nine SNPs of interest. Subsequently, we tested for expression quantitative trait loci (eQTLs) among the SNPs associated with childhood-onset asthma and the expression of 17q12–21 genes in resting peripheral blood mononuclear cells (PBMCs) from 85 African American CREW children and in upper airway epithelial cells from 246 African American CREW children; and in lower airway epithelial cells from 44 European American and 72 African American adults from a case-control study of asthma genetic risk in Chicago (IL, USA). Findings: 17q12–21 SNPs were broadly associated with asthma in European Americans. Only two SNPs (rs2305480 in gasdermin-B [GSDMB] and rs8076131 in ORMDL sphingolipid biosynthesis regulator 3 [ORMDL3]) were associated with asthma in African Americans, at a Bonferroni-corrected threshold of p<0·0055 (for rs2305480_G, odds ratio [OR] 1·36 [95% CI 1·12–1·65], p=0·0014; and for rs8076131_A, OR 1·37 [1·13–1·67], p=0·0010). In upper airway epithelial cells from African American children, genotype at rs2305480 was the most significant eQTL for GSDMB (eQTL effect size [β] 1·35 [95% CI 1·25–1·46], p<0·0001), and to a lesser extent showed an eQTL effect for post-GPI attachment to proteins phospholipase 3 (β 1·15 [1·08–1·22], p<0·0001). No SNPs were eQTLs for ORMDL3. By contrast, in PBMCs, the five core SNPs were associated only with expression of GSDMB and ORMDL3. Genotype at rs12936231 (in zona pellucida binding protein 2) showed the strongest associations across both genes (for GSDMB, eQTLβ 1·24 [1·15–1·32], p<0·0001; and for ORMDL3 (β 1·19 [1·12–1·24], p<0·0001). The eQTL effects of rs2305480 on GSDMB expression were replicated in lower airway cells from African American adults (β 1·29 [1·15–1·44], p<0·0001). Interpretation: Our study suggests that SNPs regulating GSDMB expression in airway epithelial cells have a major role in childhood-onset asthma, whereas SNPs regulating the expression levels of 17q12–21 genes in resting blood cells are not central to asthma risk. Our genetic and gene expression data in African Americans and European Americans indicated GSDMB to be the leading candidate gene at this important asthma locus.6 month embargo; published: 01 May 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore