2,563 research outputs found

    Threading the spindle: a geometric study of chiral liquid crystal polymer microparticles

    Full text link
    Polymeric particles are strong candidates for designing artificial materials capable of emulating the complex twisting-based functionality observed in biological systems. In this letter, we provide the first detailed investigation of the swelling behavior of bipolar polymer liquid crystalline microparticles. Deswelling from the spherical bipolar configuration causes the microparticle to contract anisotropically and twist in the process, resulting in a twisted spindle shaped structure. We propose a model to describe the observed spiral patterns and twisting behavior

    Lost in the Storm: The Academic Collaborations that Went Missing in Hurricane Isaac

    Get PDF
    By exploiting the cancellation of the 2012 American Political Science Association Annual Meeting, we investigate the role of conferences in facilitating academic collaboration. We assembled datasets comprising 17,467 academics, and in difference-in-differences analysis we find that the conference cancellation led to a decrease in individuals' likelihood of co-authoring an article with another attendant by sixteen percent. Moreover, collaborations formed among attendants of (occurring) conferences are associated with more successful co-publications: an effect which is sharpest for teams that are new or non-collocated. Conferences seem to de-cluster the co-authorship network. Altogether, our findings demonstrate the importance of conferences in scientific production

    Community Participation in Two Vaccination Trials in Slums of Kolkata, India: A Multi-level Analysis

    Get PDF
    This study aims at understanding the individual and community-level characteristics that influenced participation in two consecutive vaccine trials (typhoid and cholera) in urban slums of Kolkata, India. The study area was divided into 80 geographic clusters (communities), with 59,533 subjects aged ≥2 years for analysis. A multi-level model was employed in which the individuals were seen nested within the cluster. Rates of participation in both the trials were nearly the same; those who participated in the initial trial were likely to participate in the subsequent cholera vaccine trial. Communities with predominantly Hindu population, lower percentage of households with an educated household head, or lower percentage of households owning a motorbike had higher participation than their counterparts. At individual scale, higher participation was observed among younger subjects, females, and individuals from households with a household head who had no or minimal education. Geographic patterns were also observed in participation in the trials. The results illustrated that participation in the trial was mostly influenced by various individual and community-level factors, which need to be addressed for a successful vaccination campaign

    Habitat disturbance and the organization of bacterial communities in Neotropical hematophagous arthropods

    Get PDF
    The microbiome plays a key role in the biology, ecology and evolution of arthropod vectors of human pathogens. Vector-bacterial interactions could alter disease transmission dynamics through modulating pathogen replication and/or vector fitness. Nonetheless, our understanding of the factors shaping the bacterial community in arthropod vectors is incomplete. Using large-scale 16S amplicon sequencing, we examine how habitat disturbance structures the bacterial assemblages of field-collected whole-body hematophagous arthropods that vector human pathogens including mosquitoes (Culicidae), sand flies (Psychodidae), biting midges (Ceratopogonidae) and hard ticks (Ixodidae). We found that all comparisons of the bacterial community among species yielded statistically significant differences, but a difference was not observed between adults and nymphs of the hard tick, Haemaphysalis juxtakochi. While Culicoides species had the most distinct bacterial community among dipterans, tick species were composed of entirely different bacterial OTU’s. We observed differences in the proportions of some bacterial types between pristine and disturbed habitats for Coquillettidia mosquitoes, Culex mosquitoes, and Lutzomyia sand flies, but their associations differed within and among arthropod assemblages. In contrast, habitat quality was a poor predictor of differences in bacterial classes for Culicoides biting midges and hard tick species. In general, similarities in the bacterial communities among hematophagous arthropods could be explained by their phylogenetic relatedness, although intraspecific variation seems influenced by habitat disturbance.The microbiome plays a key role in the biology, ecology and evolution of arthropod vectors of human pathogens. Vector-bacterial interactions could alter disease transmission dynamics through modulating pathogen replication and/or vector fitness. Nonetheless, our understanding of the factors shaping the bacterial community in arthropod vectors is incomplete. Using large-scale 16S amplicon sequencing, we examine how habitat disturbance structures the bacterial assemblages of field-collected whole-body hematophagous arthropods that vector human pathogens including mosquitoes (Culicidae), sand flies (Psychodidae), biting midges (Ceratopogonidae) and hard ticks (Ixodidae). We found that all comparisons of the bacterial community among species yielded statistically significant differences, but a difference was not observed between adults and nymphs of the hard tick, Haemaphysalis juxtakochi. While Culicoides species had the most distinct bacterial community among dipterans, tick species were composed of entirely different bacterial OTU’s. We observed differences in the proportions of some bacterial types between pristine and disturbed habitats for Coquillettidia mosquitoes, Culex mosquitoes, and Lutzomyia sand flies, but their associations differed within and among arthropod assemblages. In contrast, habitat quality was a poor predictor of differences in bacterial classes for Culicoides biting midges and hard tick species. In general, similarities in the bacterial communities among hematophagous arthropods could be explained by their phylogenetic relatedness, although intraspecific variation seems influenced by habitat disturbance

    Potential ecological and socio-economic effects of a novel megaherbivore introduction: the hippopotamus in Colombia

    Get PDF
    Introduced species can have strong ecological, social and economic effects on their non-native environment. Introductions of megafaunal species are rare and may contribute to rewilding efforts, but they may also have pronounced socio-ecological effects because of their scale of influence. A recent introduction of the hippopotamus Hippopotamus amphibius into Colombia is a novel introduction of a megaherbivore onto a new continent, and raises questions about the future dynamics of the socio-ecological system into which it has been introduced. Here we synthesize current knowledge about the Colombian hippopotamus population, review the literature on the species to predict potential ecological and socio-economic effects of this introduction, and make recommendations for future study. Hippopotamuses can have high population growth rates (7–11%) and, on the current trajectory, we predict there could be 400–800 individuals in Colombia by 2050. The hippopotamus is an ecosystem engineer that can have profound effects on terrestrial and aquatic environments and could therefore affect the native biodiversity of the Magdalena River basin. Hippopotamuses are also aggressive and may pose a threat to the many inhabitants of the region who rely upon the Magdalena River for their livelihoods, although the species could provide economic benefits through tourism. Further research is needed to quantify the current and future size and distribution of this hippopotamus population and to predict the likely ecological, social and economic effects. This knowledge must be balanced with consideration of social and cultural concerns to develop appropriate management strategies for this novel introduction

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI)

    Full text link
    We demonstrate a novel technology that combines the power of the multi-object spectrograph with the spatial multiplex advantage of an integral field spectrograph (IFS). The Sydney-AAO Multi-object IFS (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) that allows 13 imaging fibre bundles ("hexabundles") to be deployed over a 1-degree diameter field of view. Each hexabundle comprises 61 lightly-fused multimode fibres with reduced cladding and yields a 75 percent filling factor. Each fibre core diameter subtends 1.6 arcseconds on the sky and each hexabundle has a field of view of 15 arcseconds diameter. The fibres are fed to the flexible AAOmega double-beam spectrograph, which can be used at a range of spectral resolutions (R=lambda/delta(lambda) ~ 1700-13000) over the optical spectrum (3700-9500A). We present the first spectroscopic results obtained with SAMI for a sample of galaxies at z~0.05. We discuss the prospects of implementing hexabundles at a much higher multiplex over wider fields of view in order to carry out spatially--resolved spectroscopic surveys of 10^4 to 10^5 galaxies.Comment: 24 pages, 16 figures. Accepted by MNRA

    Discovery of the first dual GSK3 beta inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer's disease

    Get PDF
    The formation of neurofibrillary tangles (NFTs), oxidative stress and neuroinflammation have emerged as key targets for the treatment of Alzheimer’s disease (AD), the most prevalent neurodegenerative disorder. These pathological hallmarks are closely related to the over-activity of the enzyme GSK3β and the downregulation of the defense pathway Nrf2-EpRE observed in AD patients. Herein, we report the synthesis and pharmacological evaluation of a new family of multitarget 2,4-dihydropyrano[2,3-c]pyrazoles as dual GSK3β inhibitors and Nrf2 inducers. These compounds are able to inhibit GSK3β and induce the Nrf2 phase II antioxidant and anti-inflammatory pathway at micromolar concentrations, showing interesting structure-activity relationships. The association of both activities has resulted in a remarkable anti-inflammatory ability with an interesting neuroprotective profile on in vitro models of neuronal death induced by oxidative stress and energy depletion and AD. Furthermore, none of the compounds exhibited in vitro neurotoxicity or hepatotoxicity and hence they had improved safety profiles compared to the known electrophilic Nrf2 inducers. In conclusion, the combination of both activities in this family of multitarget compounds confers them a notable interest for the development of lead compounds for the treatment of AD
    • …
    corecore