45 research outputs found

    Crystal plasticity model calibration for 316l stainless steel single crystals during deformation

    Get PDF
    Type 316L austenitic stainless steel is an important structural material used for the in-core components and pressure boundaries of light water reactors. In order to study degradation mechanisms in such a steel, like crack initiation and propagation, it is crucial to develop reliable crystal plasticity models at microscale that would account for anisotropic nature of the material and realistic modelling of grain topology. In this work we present a procedure for calibrating material properties of a slip-based crystal plasticity finite element model and investigate its suitability as a constitutive model for single-crystal tensile test simulations. The material properties include the anisotropic elastic and crystal plasticity material parameters that are calibrated against experimental tensile test curves for 316L stainless steel single crystals at selected crystallographic orientations. For the crystal plasticity material parameters a systematic sensitivity study using Bassani and Wu hardening law is performed

    Grain-Scale Modeling Approaches for Polycrystalline Aggregates

    Get PDF

    Reliability of Degraded Steam Generator Tubes

    Get PDF

    Nuclear Power Plant Maintenance Optimization with Heuristic Algorithm

    Get PDF

    Estimating Minimum Polycrystalline Aggregate Size for Macroscopic Material Homogeneity

    Get PDF
    ABSTRACT During severe accidents the pressure boundary of reactor coolant system can be subjected to extreme loadings, which might cause failure. Reliable estimation of the extreme deformations can be crucial to determine the consequences of severe accidents. Important drawback of classical continuum mechanics is idealization of inhomogenous microstructure of materials. Classical continuum mechanics therefore cannot predict accurately the differences between measured responses of specimens, which are different in size but geometrical similar (size effect). A numerical approach, which models elastic-plastic behavior on mesoscopic level, is proposed to estimate minimum size of polycrystalline aggregate above which it can be considered macroscopically homogeneous. The main idea is to divide continuum into a set of sub-continua. Analysis of macroscopic element is divided into modeling the random grain structure (using Voronoi tessellation and random orientation of crystal lattice) and calculation of strain/stress field. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to 2D models

    ICONE10-22534 SHORT INTERGRANULAR CRACKS IN ELASTO-PLASTIC POLYCRYSTALLINE AGGREGATE

    Get PDF
    ABSTRACT Computational algorithms aiming at modeling and visualization of the initiation and growth of intergranular stress corrosion cracks (e.g., in the steam generator tubes) on the grain-size scale have already been proposed. Main focus of the paper addresses the influence of randomly oriented anisotropic elasto-plastic grains on the microscopic stress fields at crack tips. The limited number of calculations indicate that the incompatibility strains, which develop along the boundaries of randomly oriented grains, influence the local stress fields (Jintegrals) at crack tips significantly

    Infrastructure and international cooperation in research and knowledge transfer: supporting access to key infrastructures and pan-European research − lessons learned

    Get PDF
    Access to research infrastructures has been supported by the European Commission under different financial schemes. During the 6th EURATOM Framework Programme the instrument introduced by the European Commission were the Integrated Infrastructure Initiatives (I-3). Moreover, funding schemes to support Education and Training for students and professional developments were defined also. The main difference between these two funding schemes is that I-3 are topic-driven projects with access to infrastructure components, while the Education and Training related projects have a mobility component that is applied for the different research topics. The outcome of projects as TALISMAN (I-3), EFNUDAT/NUDAME (I-3), GENTLE (mobility), ENEN-plus (mobility), NUGENIA-plus (mobility within TA of NUGENIA) and ESNII-plus (I-3 similar) will be shortly presented as well as the future European Commission plans in the field of access to research infrastructure

    Education, training and mobility: towards a common effort to assure a future workforce in Europe and abroad

    Get PDF
    The paper highlights the main features of some Euratom projects, which have been running recently in support to education, training and mobility in the nuclear fields. The described projects address various critical aspects of nuclear knowledge management, aiming at maintaining the wealth of nuclear expertise in Europe in an environment characterised by decreased attractiveness of nuclear careers. In an effort to broaden the cooperation and to further extend the opportunities for mobility, some projects ran in parallel with similar initiatives undertaken beyond the European borders. The lesson learnt in terms of successes achieved and critical aspects revealed by the different actions are finally discussed also considering recent recommendations and assessed scenarios by the European Commission for the decarbonisation of the energy sector
    corecore