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Abstract.

Type 316L austenitic stainless steel is an important structural material used for the
in-core components and pressure boundaries of light water reactors. In order to study
degradation mechanisms in such a steel, like crack initiation and propagation, it is cru-
cial to develop reliable crystal plasticity models at microscale that would account for
anisotropic nature of the material and realistic modelling of grain topology. In this work
we present a procedure for calibrating material properties of a slip-based crystal plasticity
finite element model and investigate its suitability as a constitutive model for single-crystal
tensile test simulations. The material properties include the anisotropic elastic and crystal
plasticity material parameters that are calibrated against experimental tensile test curves
for 316L stainless steel single crystals at selected crystallographic orientations. For the
crystal plasticity material parameters a systematic sensitivity study using Bassani and
Wu hardening law is performed.

1 INTRODUCTION

Type 316L austenitic stainless steel is a common structural material in nuclear power
reactors. It undergoes degradation due to severe operational conditions (high irradiation,
stresses and corrosive environment) that may limit its operational life. To understand the
material behavior of these steels under such conditions, modelling of material properties at
increasingly smaller scales is becoming more and more important. Efforts are being made
to incorporate random grain structure, texture and increasingly sophisticated material
models [1] that on the grain-size level often are based on the crystal plasticity theory.
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Determination of material parameters for crystal plasticity models is obviously of im-
mense importance. In an ideal case, the parameters can be obtained from tensile test
experiments on manufactured single crystal specimens with different crystallographic ori-
entations. However, it is not always possible to manufacture single crystals, which at
the end limits the material model calibration to using only macroscopic, polycrystalline
response [2, 3]. In the case of 316L stainless steel, it is extremely challenging to grow
single crystals, which is why only few reports on single crystal studies exist in literature
[4, 5].

In Ref. [4] tensile experiments on single-crystal 316L stainless steel (with a composition
of 17% Cr, 12% Ni, 2% Mn, and 0.75% Si) demonstrated a strong orientation dependence
on stages of deformation and governing deformation mechanisms. A unique observation
was the occurrence of twinning at low strains in all investigated tensile directions: [001],
[111] and [123]. The challenge in modelling and predicting the stress-strain response and
texture evolution in this type of steel was the consideration of several microstructural
mechanisms (twinning, slip, interstitial content, and precipitation hardening) at the same
time, length scales associated with them, and interactions between mechanisms. For this
purpose, a viscoplastic self-consistent crystal plasticity model was developed and used to
simulate the stress-strain response of 316L stainless steel single crystals [4].

In this paper a calibration of material parameters for crystal plasticity finite element
model of type 316L stainless steel is performed. The calibration is provided against
measured true stress versus true inelastic strain responses of 316L stainless steel single
crystals strained along [001], [111] and [123] directions [4]. In a crystal plasticity model
only slip is considered as the governing mechanism for plastic deformation.

The structure of the paper is as follows. First, a model description is given with
outlining the employed slip-based crystal plasticity constitutive theory and finite element
model. Second, a description of the calibration procedure for crystal plasticity material
parameters is explained. Finally, the results are presented and conclusions are given at
the end.

2 MODEL DESCRIPTION

2.1 Constitutive model

A single crystal is assumed to behave as an anisotropic continuum. Constitutive rela-
tions in linear elasticity are given by the generalized Hooke’s law:

σij = Cijklεkl (1)

where σij represents the second rank stress tensor, Cijkl the fourth rank stiffness tensor
and εij the second rank strain tensor. Indices i, j, k and l are running from 1 to 3. A
cubic crystal lattice symmetry imposes three independent constants c11(= C1111), c12(=
C1122) and c14(= C1212) that are taken here from literature for 316L stainless steel [6]:
c11 = 204600 MPa, c12 = 137700 MPa, c14 = 126200 MPa.
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The plastic behavior of the crystal is described within crystal plasticity theory [7].
Crystal plasticity assumes that plastic deformation in single crystals takes place via simple
shear on a specific set of planes. Deformation by other mechanisms such as, for example,
diffusion, twinning and grain boundary sliding is not taken into the account in the present
model. Details of the implemented crystal plasticity constitutive model are given, for
example, in Ref. [8].

The combination of a slip plane, denoted by its normal mα
i , and a slip direction sα

i is
called a slip system α. Type 316L stainless steel has a face-centered-cubic crystal structure
and hence 12 slip systems denoted by {111} < 110 >. Symbols {l, m, n} and < l, m, n >

denote respectively the family of (l, m, n) planes and family of [l, m, n] directions that are
identical due to the symmetry of the crystal.

The plastic velocity gradient u̇
p
ij due to a crystallographic slip can be written as [9]

u̇
p
ij =

∑
α

γ̇αsα
i mα

j (2)

where the summation is performed over all active slip systems α, while γ̇α represents the
shear rate. The cumulative slip γ over time t is defined as

γ =
∑

α

t∫

0

∣∣γ̇α
∣∣dt. (3)

From the relation for small strain εij = 1
2
(uij + uji) one can obtain the plastic strain rate,

ε̇
p
ij =

∑
α

1

2
γ̇α

(
sα

i mα
j + sα

j mα
i

)
. (4)

The constitutive relation of the elasto-plastic crystal can be given in terms of stress and
strain rates as [10]

σ̇ij = Cijkl(ε̇kl − ε̇
p
kl). (5)

It is assumed that the shear rate γ̇α depends on the stress only via the Schmid resolved
shear stress,

τα = sα
i σijm

α
j , (6)

as

γ̇α = ȧα τα

gα

∣∣∣∣
τα

gα

∣∣∣∣
n−1

. (7)

This is a reasonable approximation at room temperature and for ordinary strain rates and
pressures [10]. Yielding is then assumed to take place when the Schmidt resolved shear
stress exceeds the critical shear stress τ0. In Eq. (7) ȧα represents the reference strain
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Figure 1: Left: definition of some of crystal plasticity material parameters in Bassani and Wu hardening
model. Right: finite element model of the 316L stainless steel specimen gage section with dimensions
8.0×3.0×1.5 mm. Arrows denote a tensile direction and boundary conditions. A local coordinate system
assigns the initial material orientation (here [111] direction is chosen to be along the tensile direction).

rate, n the strain rate sensitivity parameter and gα the current strain-hardened state of
the crystal. In the limit n → ∞, this power law approaches that of a rate independent
material. The current strain-hardened state gα can be derived from

ġα =
∑

β

hαβγ̇β (8)

where hαβ are the slip hardening moduli defined by the adopted hardening law. In this
work the hardening law of Bassani and Wu is used [11].

The Bassani and Wu hardening law considers three stages of hardening of crystalline
materials (see Fig. 1). The expression for self and latent hardening depends on the shear
strains γα of all slip systems

hαα =

{
(h0 − hs)sech

2

[
(h0 − hs)γ

α

τs − τ0

]
+ hs

}
G(γβ; β �= α),

hαβ = qhαα, (α �= β) (9)

where h0 stands for the initial hardening modulus, hs for the hardening modulus during
easy glide within the stage-I hardening, τ0 for the yield stress, equal to the initial value
of the current strength gα(0), τs for the saturation stress or a reference stress where large
plastic flow initiates [9], and γ for the total shear strain in all slip systems, Eq. (3).
Parameter q is the latent to self hardening ratio, and

G(γβ; β �= α) = 1 +
∑
β �=α

fαβtanh

(
γβ

γ0

)
(10)

deals implicitly with cross-hardening that occurs between slip systems during stage II.
Here, fαβ denotes the magnitude of the interaction strength between slip systems α and
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β, while γ0 represents the amount of slip after which the interaction between slip systems
reaches the peak strength.

The above mentioned crystal plasticity theory along with the hardening law of Bas-
sani and Wu [11] have been implemented numerically within the user subroutine UMAT
written by Huang [9]. This UMAT subroutine has been used with finite element solver
ABAQUS [12] for the present work. Note that UMAT allows to define one reference strain
rate for one family of slip systems (hence ȧα → ȧ) and one value for the magnitude of the
interaction strength between slip systems α and β (hence fαβ → f0).

The crystal plasticity model has been implemented for finite deformations and rota-
tions. The orientations of the slip systems are updated during every call to the UMAT
and stresses are updated using the updated orientations.

2.2 Finite element model

Finite element simulations are performed by constructing a finite element model of
the specimen gage section used in experimental studies [4] with second order reduced
integration elements (C3D20R) available in ABAQUS [12], see Fig. 1. The number of
elements used in simulations varies from 8 (4 × 2 × 1) to 2304 (32 × 12 × 6). A material
orientation is assigned by introducing a local coordinate system into the ABAQUS model
section. Initially, all the elements have the same material orientation. Note that for a
given direction of straining ([001], [111] or [123]), a local coordinate system is defined up
to an arbitrary rotation angle around the tensile axis (global Z axis). The effect of this
angle is also briefly studied here.

Tension tests are simulated using displacement control analysis with the same strain
rate as used in experiments (5×10−5 s−1). Two simulation steps are used: in the first step
the applied nominal strain is 0.003 (just above the yielding point) and in the second step
the applied nominal strain is 0.5. Elastic deformation at the yielding point is estimated
within the first simulation step at the point of maximum stress change. This value is then
subtracted from the total strain to obtain the inelastic strain. The number of increments
per simulation step is taken large enough to provide numerical stability and convergence:
for [001] and [123] directions around 50 increments per step are enough, while for [111]
direction at least 1000 of them are needed.

For boundary conditions, a constant displacement rate is specified in the axial direction
(Z axis) for all the nodes on the front surface; the nodes on the back surface are constrained
to have zero axial displacement. To avoid rotations around the tensile axis, additional
constraints are prescribed to the following four edges: one vertical edge and one horizontal
edge of the front surface (and similar on the back surface) are constrained in X and Y

directions, respectively, as to remain straight and maintain a right corner during the
deformation, see Fig. 1.
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  n            a .          h0 τs τ0        hs γ0            f0             q
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[123]     413      0.0997    358    105     74.0    123      0.323      0.361      0.906

Figure 2: A comparison between experimental [4] (circles) and calculated (lines) tensile stress-strain
curves obtained on a 48-element model. Each line was fitted separately to the corresponding experimental
data; crystal plasticity material parameters for each orientation are also shown (ȧ is in units of 1/s and
h0, hs, τ0, τs in MPa).

3 CALIBRATION PROCEDURE

In the calibration procedure the plastic material properties are changed so that the
obtained numerical tensile curves of the three different crystal orientations (strained along
[001], [111] and [123] directions) are fitted simultaneously to the corresponding measured
true stress-strain curves of 316L stainless steel single crystals [4]. Identification of crystal
plasticity material parameters is based on the assumption that all 12 slip systems, all
belonging to one family, posses the same stress-strain behaviour (Fig. 1).

In the Bassani and Wu hardening model there are 9 material parameters involved:
n, ȧ, h0, hs, τ0, τs, γ0, f0, q. In principle, parameters h0, hs, τ0, τs could be identified
directly from the resolved shear stress versus shear strain curves, see Fig. 1. As our data
is not available in such a form, all 9 parameters are instead found with our automatised
optimization code.

In the optimization procedure, the optimal values for 9 material parameters are ob-
tained by minimizing the χ2 of the least-square fitting procedure to all three data curves,

χ2 =
(
χ2

[001] + χ2
[111] + χ2

[123]

) /
3 =

∑
[...]

m∑
i=1

(σi − σ33(ε
p
i , P ))

2 /
3(m − 10) (11)

where σi and ε
p
i are respectively the measured true stress and true inelastic strain for a

given crystal orientation ([...] in Eq. (11) stands for [001], [111] and [123]). The σ33(ε
p
i , P )

is the calculated volume-averaged true stress component along tensile direction (Z axis)
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Figure 3: Calculated inverse pole figures showing the evolution of tensile axis orientations from unde-
formed to 50% strained state. Points represent orientations at the integration points of the finite element
model. Material parameters used are the same as in Fig. 2.

obtained for a given crystal orientation and material parameter set P . The value of stress
σ33 at the measured strain point ε

p
i is calculated from the interpolation of stresses at

neighboring simulation strain points.
Minimization of χ2 with respect to 9 crystal plasticity material parameters is performed

using Powell’s method [13]. Several runs with different initial parameter sets are tried in
order to find the global minimum of χ2. A two-way communication between ABAQUS
and the minimization code is established through a separate fortran subroutine which
enables an automatic identification of the parameters.

4 RESULTS

4.1 Calibration against individual data sets

Figures 2 and 3 present the results of simulations run with three different parameter sets
calibrated separately against each of the three tensile data. In Eq. (11) this corresponds
to minimizing separately χ2

[001], χ2
[111] and χ2

[123]. As can be seen from Fig. 2, almost
perfect fits exist for all three tensile directions. The corresponding crystal plasticity
material parameters (also shown in Fig. 2) do not differ considerably (except hs) from
one orientation to the other. This is encouraging in a sense that a reasonably good fit
could also be found using only one common set of crystal plasticity material parameters.

Figure 3 shows the simulation results for the evolution of tensile axis orientations
from undeformed to 50% strained state. The results predict a development of material
orientation gradient for [111] and [123] loading directions. Unfortunately, no experimental
analogue has been found in literature to validate the simulations.

4.2 Calibration against all data sets

Results of the calibration procedure, where the fits are performed to all three data
sets simultaneously, are shown in Figs. 4 and 5. As anticipated, a very good agreement
between the calculated lines and measurements in Fig. 4 can be found for all strains [15].
This confirms that a slip-based crystal plasticity model with Bassani and Wu hardening
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Figure 4: A comparison between experimental [4] (circles) and calculated (lines) tensile stress-strain
curves obtained on a finest mesh with 2304 elements. All three lines were fitted simultaneously to the
experimental data; the corresponding crystal plasticity material parameters are also shown (ȧ is in units
of 1/s and h0, hs, τ0, τs in MPa).

can be used to describe tensile deformation behaviour of 316L stainless steel single crystals.
In addition, the same results suggest that the combined effects of slip and twinning, which
is also an important deformation mechanism in this type of steel [4, 5], can be modeled
by slip alone (at least when considering stress-strain response).

undeformed
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[001] [001] [001][101] [101] [101]

[111] [111] [111]

Figure 5: Calculated inverse pole figures showing the evolution of tensile axis orientations from unde-
formed to 50% strained state. Points represent orientations at the integration points of the finite element
model. Material parameters used are the same as in Fig. 4.

Regarding texture evolution, however, the predictions of simulations shown in Fig. 5
still need to be validated against measurements. In particular, a development of quite large
orientation gradients observed for [111] and [123] loading directions should be examined
and compared in more detail.
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4.2.1 Sensitivity analysis
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Figure 6: Sensitivity of the simulation results to a ±10% parameter change from its optimal value. One
parameter is varied in each plot with the remaining parameters being fixed at their optimal values (see
the table in Fig. 7). Results are obtained in a model with 288 elements.

A brief sensitivity analysis of the calibrating parameters is presented in Fig. 6. The
largest influence on all three directions of straining have parameters τs and hs. Slightly
smaller influence, but mostly in [001] and [111] directions, have h0 and τ0, as well as q in
[001] direction. These 5 parameters are therefore relatively well determined from the fits.
On contrary, parameters ȧ, n, γ0 and f0 have higher ambiguity.

The influence of mesh density on the calibration output is checked by comparing best
fit parameters on models with up to 2304 elements (Fig. 4). The quality of the fits is
not reduced on smaller systems, however, a slight change is observed in the calibrating
values. For example, comparing the parameter values in Fig. 4 with those obtained in a
288-element model (Fig. 7), the largest difference of 20% is observed for ȧ, while other
parameters differ less than 4%. This again implies that ȧ possesses biggest uncertainty.

Robustness of the calculated stress-strain curves is finally checked against different
possibilities in selecting a material orientation (a local coordinate system in ABAQUS). As
already discussed, for a given direction of straining ([001], [111] or [123]), a local coordinate
system is defined up to an arbitrary rotation angle around the tensile axis. Since our
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2 branches

Figure 7: Calculated stress-strain curves as a function of material orientation uncertainty. Eight equidis-
tant rotations from 0 to 2π (denoted by different line types) of material coordinate system around the
straining (Z) axis are considered. Calibrating parameters are shown for the lower branch of the [111]
response. In the model 288 elements are used.

model geometry is far from cylindrical, in principle the results should be affected by the
choice of this angle. This is indeed observed in Fig. 7. While [001] and [123] directions
show negligible dependence, the response in [111] direction is non trivial: seemingly two
branches of solutions develop after reaching 10% of deformation. Note that in performing
material calibrations always the lower branch is selected.

5 CONCLUSIONS

In this paper a procedure for automatic calibration of crystal-plasticity material pa-
rameters has been introduced and implemented in a slip-based crystal plasticity finite
element model for single-crystal tensile measurements of type 316L stainless steel. Using
the hardening law of Bassani and Wu, the calibrated parameters correctly predict the
stress-strain response in all investigated directions. This suggests that the combined ef-
fects of slip and twinning, which is also an important deformation mechanism in this type
of steel, can be effectively modeled by slip alone. The uncertainties of the calibrating pa-
rameters have been estimated for various mesh densities in a systematic single-parameter
influence study on the calculated tensile curves.
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