559 research outputs found

    Disability through COVID-19 pandemic: neurorehabilitation cannot wait.

    Get PDF
    Coronavirus disease 2019 (CoViD-19) pandemic is strongly impacting all domains of our healthcare systems, including rehabilitation. In Italy, the first hit European country, medical activities were postponed to allow shifting of staff and facilities to intensive care, with neurorehabilitation limited to time-dependent diseases, <sup>1</sup> including CoViD-19 complications. <sup>2,3</sup> Hospital access to people with chronic neurodegenerative conditions such as multiple sclerosis, movement disorders or dementia, more at risks of serious consequences from the infection, <sup>4</sup> has been postponed. Patients also seek less for hospital care, with over 50% reduced stroke admissions as from an Italian survey, <sup>5</sup> possibly in fear of being infected or denied to see their families after being hospitalized. This situation can be bearable only for a short time, as any initial freezing reaction to a danger

    Intensive Care Admission and Early Neuro-Rehabilitation. Lessons for COVID-19?

    Get PDF
    Coronavirus disease 2019 (COVID-19) requires admission to intensive care (ICU) for the management of acute respiratory distress syndrome in about 5% of cases. Although our understanding of COVID-19 is still incomplete, a growing body of evidence is indicating potential direct deleterious effects on the central and peripheral nervous systems. Indeed, complex and long-lasting physical, cognitive, and functional impairments have often been observed after COVID-19. Early (defined as during and immediately after ICU discharge) rehabilitative interventions are fundamental for reducing the neurological burden of a disease that already heavily affects lung function with pulmonary fibrosis as a possible long-term consequence. In addition, ameliorating neuromuscular weakness with early rehabilitation would improve the efficiency of respiratory function as respiratory muscle atrophy worsens lung capacity. This review briefly summarizes the polymorphic burden of COVID-19 and addresses possible early interventions that could minimize the neurological and systemic impact. In fact, the benefits of early multidisciplinary rehabilitation after an ICU stay have been shown to be advantageous in several clinical conditions making an early rehabilitative approach generalizable and desirable to physicians from a wide range of different specialties

    Telemedicine in Parkinson's Disease: How to Ensure Patient Needs and Continuity of Care at the Time of COVID-19 Pandemic

    Get PDF
    Introduction: With the spread of the SARS-CoV2 pandemic, telemedicine has become the safest way to guarantee care continuity, especially for chronic disabling diseases requiring frequent medical consultations and therapeutic adjustments, such as Parkinson's disease (PD). The age-related prevalence of PD, combined with increased vulnerability due to age-related comorbidities, makes PD patients protection a priority. Methodology: We reviewed potentials and limitations of teleneurology in PD and suggested a specific battery of tests, including patient-reported outcomes, smartphone applications, and neurological examination through telemedicine. Conclusions: These tools can provide full neurological consultations, with the engagement of both patients and caregivers, and can support clinicians in defining whether patients need to access diagnostic and therapeutic procedures. Telemedicine will also carry a value in the future, within conventional health care, to support clinicians in decision making, enabling more efficacious follow-up, reducing burden for caregivers, and delivering neurological expertise to local realities. These advantages are very important when there is physical distance between patients and neurologists, and when patients are not recommended to attend in-person consultations

    Involvement of cortico-subcortical circuits in normoacousic chronic tinnitus: A source localization EEG study

    Get PDF
    To better characterize brain circuits dysfunctions in normoacousic tinnitus sufferers. Methods: 17 normoacousic chronic, unilateral high-pitched tinnitus sufferers (6 females, 43.6 ± 9.8 y.o, disease duration 22 ± 35 months) underwent a 29-channel resting-state electroencephalography (EEG – 5 min opened-eyes, 5 min closed-eyes) and auditory oddball paradigm for event-related potentials analyses (ERPs – N1, P2 and P300). Cortical 3D distribution of current source density was computed with sLORETA. Results were compared with 17 controls (9 females, 45.7 ± 15.1 y.o). Results: Eyes opened, tinnitus sufferers had lower alpha and beta sources in the left inferior parietal lobule. Eyes closed, tinnitus sufferers had decreased alpha sources in the left inferior temporal and post-central gyri, and low gamma sources in the left middle temporal gyrus. EEG data did not correlate with tinnitus sufferers’ clinical features. Subjects with tinnitus had shorter N1 and P2 latencies. P300 did not differ between groups. sLORETA solutions showed decreased sources of these ERPs in the left inferior temporal gyrus in the tinnitus group. Conclusions: We showed cortico-thalamo-cortical involvements in normoacousic tinnitus with hyperexcitability of the left auditory cortex and inferior temporal gyrus. Significance: This might reflect processes of maladaptive cortical plasticity and memory consolidation. Further validation is needed to establish the value of this tool in customizing therapeutic approach

    Action observation and motor imagery in performance of complex movements: Evidence from EEG and kinematics analysis

    Get PDF
    Motor imagery (MI) and action observation (AO) are considered effective cognitive tools for motor learning, but little work directly compared their cortical activation correlate in relation with subsequent performance. We compared AO and MI in promoting early learning of a complex four-limb, hand?foot coordination task, using electroencephalographic (EEG) and kinematic analysis. Thirty healthy subjects were randomly assigned into three groups to perform a training period in which AO watched a video of the task, MI had to imagine it, and Control (C) was involved in a distracting computation task. Subjects were then asked to actually perform the motor task with kinematic measurement of error time with respect to the correct motor performance. EEG was recorded during baseline, training and task execution, with task-related power (TRPow) calculation for sensorimotor (alpha and beta) rhythms reactive with respect to rest. During training, the AO group had a stronger alpha desynchronization than the MI and C over frontocentral and bilateral parietal areas. However, during task execution, AO group had greater beta synchronization over bilateral parietal regions than MI and C groups. This beta synchrony furthermore demonstrated the strongest association with kinematic errors, which was also significantly lower in AO than in MI. These data suggest that sensorimotor activation elicited by action observation enhanced motor learning according to motor performance, corresponding to a more efficient activation of cortical resources during task execution. Action observation may be more effective than motor imagery in promoting early learning of a new complex coordination task

    Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery

    Get PDF
    P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifi

    Multicentre assessment of motor and sensory evoked potentials in multiple sclerosis : reliability and implications for clinical trials

    Get PDF
    Motor and sensory evoked potentials (EP) are potential candidate biomarkers for clinical trials in multiple sclerosis.; To determine test -retest reliability of motor EP (MEP) and sensory EP (SEP) and associated EP-scores in patients with multiple sclerosis.; In three centres, 16 relapsing and five progressive multiple sclerosis patients had MEPs and SEPs 1-29 days apart. Five neurophysiologists independently marked latencies by central reading. By variance component analysis, we estimated the critical difference (absolute reliability) for cross-sectional group comparison, comparison of longitudinal group changes, within-subject minimal detectable change and defined within-subject improvement.; Cortical SEP responses and cortico-muscular MEP latencies were more reliable than central conduction times. For comparison of 20 subjects per arm, cross-sectional group difference ranged from 0.7 to 3.9 ms and 1.1 to 1.7, group difference in longitudinal changes from 0.4 to 1.8 ms and 0.36 to 0.62, within-subject minimal detectable change from 1.2 to 5.8 ms and 1.2 to 2.0, within-subject improvement from 0.8 to 3.8ms and 0.8 to 1.3, for single EP modalities and EP scores, respectively.; Multicentre EP assessment with central EP reading is feasible and reliable. The critical difference is reasonably low to detect significant group changes and to define responders. The results support the concept of using EP and EP-scores as candidate response biomarkers for quantification of disease progression and for studying remyelination in multiple sclerosis

    Fifteen years of wireless sensors for balance assessment in neurological disorders

    Get PDF
    Balance impairment is a major mechanism behind falling along with environmental hazards. Under physiological conditions, ageing leads to a progressive decline in balance control per se. Moreover, various neurological disorders further increase the risk of falls by deteriorating specific nervous system functions contributing to balance. Over the last 15 years, significant advancements in technology have provided wearable solutions for balance evaluation and the management of postural instability in patients with neurological disorders. This narrative review aims to address the topic of balance and wireless sensors in several neurological disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, and other neurodegenerative and acute clinical syndromes. The review discusses the physiological and pathophysiological bases of balance in neurological disorders as well as the traditional and innovative instruments currently available for balance assessment. The technical and clinical perspectives of wearable technologies, as well as current challenges in the field of teleneurology, are also examined

    Impact of treatment with dimethyl fumarate on sleep quality in patients with relapsing-remitting multiple sclerosis: A multicentre Italian wearable tracker study

    Get PDF
    BackgroundSleep disorders are common in patients with multiple sclerosis and have a bidirectional interplay with fatigue and depression. ObjectiveTo evaluate the effect of treatment with oral dimethyl fumarate on the quality of sleep in relapsing-remitting multiple sclerosis. MethodsThis was a multicentre observational study with 223 relapsing-remitting multiple sclerosis subjects starting treatment with dimethyl fumarate (n=177) or beta interferon (n=46). All patients underwent subjective (Pittsburgh Sleep Quality Index) and objective (wearable tracker) measurements of quality of sleep. Fatigue, depression, and quality of life were also investigated and physical activity was monitored. ResultsPatients treated with dimethyl fumarate had significant improvement in the quality of sleep as measured with the Pittsburgh Sleep Quality Index (p<0.001). At all-time points, no significant changes in Pittsburgh Sleep Quality Index score were observed in the interferon group. Total and deep sleep measured by wearable tracker decreased at week 12 with both treatments, then remained stable for the total study duration. Depression significantly improved in patients treated with dimethyl fumarate. No significant changes were observed in mobility, fatigue and quality of life. ConclusionIn patients with relapsing-remitting multiple sclerosis, the treatment with dimethyl fumarate was associated with improvements in patient-reported quality of sleep. Further randomised clinical trials are needed to confirm the benefits of long-term treatment with dimethyl fumarate
    corecore