7 research outputs found

    Reconstructing past and present chemical weathering conditions via lithium isotopes

    Get PDF
    Continental weathering processes not only shape the Earth’s surface but may also play a significant role in regulating global climate. Over geologic time scales, one of the major controls on atmospheric CO2 is continental silicate weathering, where carbon dioxide is consumed during weathering reactions. However, the coupling between CO2 consumption via silicate weathering and climate is still poorly understood. Even less is known how weathering-related CO2 consumption responds to climatic oscillations. Besides silicate weathering and its importance on the atmospheric CO2 cycle, weathering processes are directly related to soil formation. Soils are key environmental resource, which sustains most life on land. Understanding how soil formation responds to climatic oscillations and human impact via agricultural practises is of critical importance. To fully comprehend the environmental controls on chemical weathering, a reliable proxy is essential. In this PhD thesis, lithium (Li) isotopes, a non-traditional chemical weathering proxy, is applied to two contrasting environmental settings: a river basin and a lake catchment. These contrasting environments were chosen to test how Li isotopes evolve spatially and temporally in a relatively large-scale river in contrast to a small-scale lacustrine setting

    Cross-examining Earth\u27s oldest stromatolites: Seeing through the effects of heterogeneous deformation, metamorphism and metasomatism affecting Isua (Greenland) ∼3700 Ma sedimentary rocks

    Get PDF
    The ∼3700 Ma and 3800 Ma meta-volcanic and -sedimentary rocks in the Isua supracrustal belt (Greenland) were affected by heterogeneous ductile deformation under amphibolite facies conditions (∼500-650 °C), and variably modified by secondary silica and carbonate mineralisation deposited from diagenetic and metasomatic fluids. Rare low-deformation areas preserve original volcanic features - submarine basaltic pillows and sedimentary features - including bedding. These are best-preserved in two dimensions on flat- to moderately-inclined outcrop surfaces, but invariably are tectonically-stretched along a steeply-plunging third dimension, through stretching in the direction of fold axes; a style of deformation found throughout Earth\u27s history. There is a debate about whether rare relicts of ∼3700 Ma stromatolites preserved in metadolomites that formed in a shallow marine setting (Nutman et al., 2016) represent bona fide biogenic primary structures fortuitously preserved in low deformation, or whether these structures are manifestations of deformation combined with non-biogenic deposition of secondary carbonate (Allwood et al., 2018). Here, we critically test the primary nature of the sedimentary rocks hosting the proposed stromatolites and also the veracity of the proposed stromatolites, by addressing the following questions: (i) Are the rocks an in situ outcrop of known age, or displaced blocks of unknown age or origin?; (ii) How much of the carbonate is of an originally sedimentary versus a secondary (i.e., metasomatic - introduced) origin?; (iii) Is the seawater-like REE + Y (rare earth element and yttrium) trace element signature carried definitely by carbonate minerals and therefore diagnostic of a cool, surficial sedimentary system?; (iv) Are the proposed stromatolites consistent with biogenicity in terms of their geometry and fine-scale layering, or could they be the product of soft sediment or structural deformation (compression in folding)? The answers to these questions, which combine diverse observations from geologic context, geochemistry and stromatolite morphology show that the weight of evidence is consistent with a biogenic origin for the stromatolites formed in a shallow water setting and are inconsistent with formation entirely through inorganic processes

    Impact of climate change and human activity on soil landscapes over the past 12,300 years

    Get PDF
    Abstract Soils are key to ecosystems and human societies, and their critical importance requires a better understanding of how they evolve through time. However, identifying the role of natural climate change versus human activity (e.g. agriculture) on soil evolution is difficult. Here we show that for most of the past 12,300 years soil erosion and development were impacted differently by natural climate variability, as recorded by sediments deposited in Lake Dojran (Macedonia/Greece): short-lived ( < 1,000 years) climatic shifts had no effect on soil development but impacted soil erosion. This decoupling disappeared between 3,500 and 3,100 years ago, when the sedimentary record suggests an unprecedented erosion event associated with the development of agriculture in the region. Our results show unambiguously how differently soils evolved under natural climate variability (between 12,300 and 3,500 years ago) and later in response to intensifying human impact. The transition from natural to anthropogenic landscape started just before, or at, the onset of the Greek ‘Dark Ages’ (~3,200 cal yr BP). This could represent the earliest recorded sign of a negative feedback between civilization and environmental impact, where the development of agriculture impacted soil resources, which in turn resulted in a slowdown of civilization expansion

    Cross-examining Earth's oldest stromatolites: Seeing through the effects of heterogeneous deformation, metamorphism and metasomatism affecting Isua (Greenland)∼3700 Ma sedimentary rocks

    No full text
    The ∼3700 Ma and 3800 Ma meta-volcanic and -sedimentary rocks in the Isua supracrustal belt (Greenland) were affected by heterogeneous ductile deformation under amphibolite facies conditions (∼500–650 °C), and variably modified by secondary silica and carbonate mineralisation deposited from diagenetic and metasomatic fluids. Rare low-deformation areas preserve original volcanic features – submarine basaltic pillows and sedimentary features – including bedding. These are best-preserved in two dimensions on flat- to moderately-inclined outcrop surfaces, but invariably are tectonically-stretched along a steeply-plunging third dimension, through stretching in the direction of fold axes; a style of deformation found throughout Earth’s history. There is a debate about whether rare relicts of ∼3700 Ma stromatolites preserved in metadolomites that formed in a shallow marine setting (Nutman et al., 2016) represent bona fide biogenic primary structures fortuitously preserved in low deformation, or whether these structures are manifestations of deformation combined with non-biogenic deposition of secondary carbonate (Allwood et al., 2018). Here, we critically test the primary nature of the sedimentary rocks hosting the proposed stromatolites and also the veracity of the proposed stromatolites, by addressing the following questions: (i) Are the rocks an in situ outcrop of known age, or displaced blocks of unknown age or origin?; (ii) How much of the carbonate is of an originally sedimentary versus a secondary (i.e., metasomatic – introduced) origin?; (iii) Is the seawater-like REE + Y (rare earth element and yttrium) trace element signature carried definitely by carbonate minerals and therefore diagnostic of a cool, surficial sedimentary system?; (iv) Are the proposed stromatolites consistent with biogenicity in terms of their geometry and fine-scale layering, or could they be the product of soft sediment or structural deformation (compression in folding)? The answers to these questions, which combine diverse observations from geologic context, geochemistry and stromatolite morphology show that the weight of evidence is consistent with a biogenic origin for the stromatolites formed in a shallow water setting and are inconsistent with formation entirely through inorganic processes.This work was supported by Australian Research Council grant DP170100715

    Dust-stack 2013 of combined sediment record ELSA

    No full text
    During the last twelve years the ELSA Project (Eifel Laminated Sediment Archive) at Mainz University has drilled a total of about 52 cores from 27 maar lakes and filled-in maar basins in the Eifel/Germany. Dating has been completed for the Holocene cores using 6 different methods (210Pb and 137Cs activities, palynostratigraphy, event markers, varve counting, 14C). In general, the different methods consistently complement one another within error margins. Event correlation was used for relating typical lithological changes with historically known events such as the two major Holocene flood events at 1342 AD and ca 800 BC. Dating of MIS2?MIS3 core sections is based on greyscale tuning, radiocarbon and OSL dating, magnetostratigraphy and tephrochronology. The lithological changes in the sediment cores demonstrate a sequence of events similar to the North Atlantic rapid climate variability of the Last Glacial Cycle. The warmest of the MIS3 interstadials was GI14, when a forest with abundant spruce covered the Eifel area from 55 to 48 ka BP, i.e. during a time when also other climate archives in Europe suggested very warm conditions. The forest of this 'Early Stage 3 warm phase' developed subsequently into a steppe with scattered birch and pine, and finally into a glacial desert at around 25 ka BP. Evidence for Mono Lake and Laschamp geomagnetic excursions is found in two long cores. Several large eruptions during Middle and Late Pleistocene (Ulmener Maar - 11,000 varve years BP, Laacher See - 12,900 varve years BP, Mosenberg volcanoes/Meerfelder Maar 41-45 cal ka BP, Dümpel Maar 116 ka BP, Glees Maar - 151 ka BP) produced distinct ash-layers crucial for inter-core and inter-site correlations. The oldest investigated maar of the Eifel is 40Ar/39Ar dated to the time older than 520 ka BP

    X. Literaturverzeichnis

    No full text

    Literatur

    No full text
    corecore