51 research outputs found

    Interannual sea ice thickness variability in the Bay of Bothnia

    Get PDF
    While variations of Baltic Sea ice extent and thickness have been extensively studied, there is little information about drift ice thickness, distribution, and its variability. In our study, we quantify the interannual variability of sea ice thickness in the Bay of Bothnia during the years 2003–2016. We use various different data sets: official ice charts, drilling data from the regular monitoring stations in the coastal fast ice zone, and helicopter and shipborne electromagnetic soundings. We analyze the different data sets and compare them to each other to characterize the interannual variability, to discuss the ratio of level and deformed ice, and to derive ice thickness distributions in the drift ice zone. In the fast ice zone the average ice thickness is 0.58±0.13&thinsp;m. Deformed ice increases the variability of ice conditions in the drift ice zone, where the average ice thickness is 0.92±0.33&thinsp;m. On average, the fraction of deformed ice is 50&thinsp;% to 70&thinsp;% of the total volume. In heavily ridged ice regions near the coast, mean ice thickness is approximately half a meter thicker than that of pure thermodynamically grown fast ice. Drift ice exhibits larger interannual variability than fast ice.</p

    Beneficial effects of running and milk protein supplements on Sirtuins and risk factors of metabolic disorders in rats with low aerobic capacity

    Get PDF
    Background Physical activity and dietary intake of dairy products are associated with improved metabolic health. Dairy products are rich with branched chain amino acids that are essential for energy production. To gain insight into the mechanisms underlying the benefit of the sub-chronic effects of running and intake of milk protein supplements, we studied Low Capacity Runner rats (LCR), a rodent exercise model with risk for metabolic disorders. We especially focused on the role of Sirtuins, energy level dependent proteins that affect many cellular metabolic processes. Methods Forty-seven adult LCR female rats sedentary or running voluntarily in wheels were fed normal chow and given supplements of either whey or milk protein drink (PD)-supplemented water, or water only for 21 weeks. Physiological responses were measured in vivo. Blood lipids were determined from serum. Mitochondrial markers and Sirtuins (Sirt1-7) including downstream targets were measured in plantaris muscle by western blotting. Results For the first 10 weeks whey-drinking rats ran about 50% less compared to other groups; still, in all runners glucose tolerance improved and triglycerides decreased. Generally, running induced a ∼six-fold increase in running capacity and a ∼8% decrease in % body fat. Together with running, protein supplements increased the relative lean mass of the total body weight by ∼11%. In comparison with sedentary controls, running and whey increased HDL (21%) and whey, with or without running, lowered LDL (−34%). Running increased mitochondrial biogenesis and Sirtuins 3 and 4. When combined with exercise, both whey and milk protein drink induced about a 4-fold increase in Sirt3, compared to runners drinking water only, and about a 2-fold increase compared to the respective sedentary group. Protein supplements, with or without running, enhanced the phosphorylation level of the acetyl-coA-carboxylase, suggesting increased fat oxidation. Both supplemented diets increased Sirt5 and Sirt7 without an additional effect from exercise. Running diminished and PD supplement increased Sirt6. Conclusion We demonstrate in rats new sub-chronic effects of milk proteins on metabolism that involve Sirtuins and their downstream targets in skeletal muscle. The results show that running and milk proteins act on reducing the risk factors of metabolic disorders and suggest that the underlying mechanisms may involve Sirtuins. Notably, we found that milk protein supplements have some favorable effects on metabolism even without running.Peer reviewe

    Satellite observations for detecting and forecasting sea-ice conditions: A summary of advances made in the SPICES Project by the EU's Horizon 2020 Programme

    Get PDF
    The detection, monitoring, and forecasting of sea-ice conditions, including their extremes, is very important for ship navigation and offshore activities, and for monitoring of sea-ice processes and trends. We summarize here recent advances in the monitoring of sea-ice conditions and their extremes from satellite data as well as the development of sea-ice seasonal forecasting capabilities. Our results are the outcome of the three-year (2015-2018) SPICES (Space-borne Observations for Detecting and Forecasting Sea-Ice Cover Extremes) project funded by the EU's Horizon 2020 programme. New SPICES sea-ice products include pancake ice thickness and degree of ice ridging based on synthetic aperture radar imagery, Arctic sea-ice volume and export derived from multisensor satellite data, and melt pond fraction and sea-ice concentration using Soil Moisture and Ocean Salinity (SMOS) radiometer data. Forecasts of July sea-ice conditions from initial conditions in May showed substantial improvement in some Arctic regions after adding sea-ice thickness (SIT) data to the model initialization. The SIT initialization also improved seasonal forecasts for years with extremely low summer sea-ice extent. New SPICES sea-ice products have a demonstrable level of maturity, and with a reasonable amount of further work they can be integrated into various operational sea-ice services

    Effects of Vegetation, Corridor Width and Regional Land Use on Early Successional Birds on Powerline Corridors

    Get PDF
    Powerline rights-of-way (ROWs) often provide habitat for early successional bird species that have suffered long-term population declines in eastern North America. To determine how the abundance of shrubland birds varies with habitat within ROW corridors and with land use patterns surrounding corridors, we ran Poisson regression models on data from 93 plots on ROWs and compared regression coefficients. We also determined nest success rates on a 1-km stretch of ROW. Seven species of shrubland birds were common in powerline corridors. However, the nest success rates for prairie warbler (Dendroica discolor) and field sparrow (Spizella pusilla) were <21%, which is too low to compensate for estimated annual mortality. Some shrubland bird species were more abundant on narrower ROWs or at sites with lower vegetation or particular types of vegetation, indicating that vegetation management could be refined to favor species of high conservation priority. Also, several species were more abundant in ROWs traversing unfragmented forest than those near residential areas or farmland, indicating that corridors in heavily forested regions may provide better habitat for these species. In the area where we monitored nests, brood parasitism by brown-headed cowbirds (Molothrus ater) occurred more frequently close to a residential area. Although ROWs support dense populations of shrubland birds, those in more heavily developed landscapes may constitute sink habitat. ROWs in extensive forests may contribute more to sustaining populations of early successional birds, and thus may be the best targets for habitat management

    Comparing sea ice, hydrography and circulation between NEMO3.6 LIM3 and LIM2

    No full text
    A set of hindcast simulations with the new version 3.6 of the Nucleus for European Modelling of the Ocean (NEMO) ocean–ice model in the ORCA1 configuration and forced by the DRAKKAR Forcing Set version 5.2 (DFS5.2) atmospheric data was performed from 1958 to 2012. Simulations differed in their sea-ice component: the old standard version Louvain-la-Neuve Sea Ice Model (LIM2) and its successor LIM3. Main differences between these sea-ice models are the parameterisations of sub-grid-scale sea-ice thickness distribution, ice deformation, thermodynamic processes, and sea-ice salinity. Our main objective was to analyse the response of the ocean–ice system sensitivity to the change in sea-ice physics. Additional sensitivity simulations were carried out for the attribution of observed differences between the two main simulations.In the Arctic, NEMO-LIM3 compares better with observations by realistically reproducing the sea-ice extent decline during the last few decades due to its multi-category sea-ice thickness. In the Antarctic, NEMO-LIM3 more realistically simulates the seasonal evolution of sea-ice extent than NEMO-LIM2. In terms of oceanic properties, improvements are not as evident, although NEMO-LIM3 reproduces a more realistic hydrography in the Labrador Sea and in the Arctic Ocean, including a reduced cold temperature bias of the Arctic Intermediate Water at 250 m. In the extra-polar regions, the oceanographic conditions of the two NEMO-LIM versions remain relatively similar, although they slowly drift apart over decades. This drift is probably due to a stronger deep water formation around Antarctica in LIM3.</p
    • …
    corecore