659 research outputs found

    New Approach to Silver Halide Photography Using Radical Cation Chemistry

    Get PDF
    A new mechanism for spectral sensitization of silver halide is described, which can potentially double the sensitivity of photographic emulsions. The photooxidized sensitizing dye is trapped using an organic donor molecule, which fragments to form a cation and a reducing radical, which injects an electron into the conduction band of the silver halide. In this way, two conduction-band electrons can be produced for each absorbed photon

    Measurement and simulation of one-dimensional transient three phase flow for monotonic liquid drainage

    Get PDF
    Simultaneous movement of oil, water, and air in a sandy porous medium was investigated experimentally under transient flow conditions and results were compared to numerical simulations employing a finite element multiphase flow code. The liquid hydrocarbon was Soltrol 170, a low-density branched alkane mixture. Liquid saturations were measured using a collinear dual-energy gamma radiation apparatus and liquid pressures were measured using hydrophilic (untreated) and hydrophobic (treated) ceramic tensiometers connected to pressure transducers. The experimental regime was selected to impose monotonically draining water and total liquid saturation paths to avoid hysteretic effects. Measured saturations and pressures are compared to values obtained from numerical simulations of the experiment using a finite element solution of the governing multiphase flow equations assuming negligible gas pressure gradients. Functional relationships between permeabilitiesk, saturations S, and capillary pressures P employed in the numerical model were estimated by two calibration methods which require different degrees of experimental effort. Measured transient water saturation versus oil-water capillary head data agreed well with predictions from static air-water S-P relations and interfacial tension data. Transient total liquid saturation versus air-oil capillary head data deviated more severely from the scaled air-water S-P data, possibly reflecting noncompliance with the assumption of negligible gas pressure gradients. Reasonably good agreement was observed between measured and numerically simulated water and oil saturations and pressures in space and time. Sensitivity of the numerical results to calibration method was not great

    An assessment of ADAMs in bone cells: absence of TACE activity prevents osteoclast recruitment and the formation of the marrow cavity in developing long bones

    Get PDF
    AbstractADAMs (A Disintegrin And Metalloprotease domain) are metalloprotease–disintegrin proteins that have been implicated in cell adhesion, protein ectodomain shedding, matrix protein degradation and cell fusion. Since such events are critical for bone resorption and osteoclast recruitment, we investigated whether they require ADAMs. We report here which ADAMs we have identified in bone cells, as well as our analysis of the generation, migration and resorptive activity of osteoclasts in developing metatarsals of mouse embryos lacking catalytically active ADAM 17 [TNFα converting enzyme (TACE)]. The absence of TACE activity still allowed the generation of cells showing an osteoclastic phenotype, but prevented their migration into the core of the diaphysis and the subsequent formation of marrow cavity. This suggests a role of TACE in the recruitment of osteoclasts to future resorption sites

    JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    Get PDF
    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release

    Zinc Intake and Biochemical Markers of Bone Turnover in Type 1 Diabetes

    Get PDF
    OBJECTIVE—To examine the relationship between Zn nutritive status and biochemical markers of bone turnover in type 1 diabetes

    Robot life: simulation and participation in the study of evolution and social behavior.

    Get PDF
    This paper explores the case of using robots to simulate evolution, in particular the case of Hamilton's Law. The uses of robots raises several questions that this paper seeks to address. The first concerns the role of the robots in biological research: do they simulate something (life, evolution, sociality) or do they participate in something? The second question concerns the physicality of the robots: what difference does embodiment make to the role of the robot in these experiments. Thirdly, how do life, embodiment and social behavior relate in contemporary biology and why is it possible for robots to illuminate this relation? These questions are provoked by a strange similarity that has not been noted before: between the problem of simulation in philosophy of science, and Deleuze's reading of Plato on the relationship of ideas, copies and simulacra

    Twice-daily amprenavir 1200 mg versus amprenavir 600 mg/ritonavir 100 mg, in combination with at least 2 other antiretroviral drugs, in HIV-1-infected patients

    Get PDF
    BACKGROUND: Low-dose ritonavir (RTV) boosts plasma amprenavir (APV) exposure. Little has been published on the efficacy, tolerability, and safety of APV 600 mg/RTV 100 mg (APV600/RTV) twice daily (BID) compared to APV 1200 mg BID (APV1200). METHODS: ESS40011 was a 24-week, multicenter, open-label, clinical trial in which antiretroviral therapy-naïve and -experienced HIV-1-infected adults were randomized 3:1 to receive either APV600/RTV BID or APV1200 BID, in combination with ≥ 2 non-protease inhibitor antiretroviral drugs. Non-inferiority of the APV600/RTV regimen to the APV1200 regimen was established if the 95% lower confidence limit for the difference in proportion of patients achieving HIV-1 RNA <200 copies/mL at week 24 with APV 600/RTV minus APV1200 was ≥-0.12. Late in the conduct of the trial, patients not yet completing 24 weeks of therapy were given the option of continuing treatment for an additional 24-week period. RESULTS: 211 patients were randomized, 158 to APV600/RTV and 53 to APV1200. At week 24, APV600/RTV was similar to or better than APV1200 (HIV-1 RNA <200 copies/mL in 62% [73/118] vs 53% [20/38] of patients; intent-to-treat: observed analysis). In the APV600/RTV arm, significantly more patients achieved HIV-1 RNA <50 copies/mL (48% [57/118] vs 29% [11/38] with APV1200, P = 0.04), and greater mean reduction from baseline in HIV-1 RNA was observed (-2.21 vs -1.59 log(10 )copies/mL, P = 0.028). The two treatment arms were similar with respect to mean overall change from baseline in CD4+ count, frequency of drug-related grade 1–4 adverse events, and frequency of discontinuing treatment due to adverse events (most commonly nausea, diarrhea, vomiting or fatigue; 7% vs 8%), although a lower proportion of patients in the APV600/RTV arm experienced drug-related oral/perioral paresthesia (2% vs 8%). Eleven (73%) of 15 patients who had HIV-1 RNA <200 copies/mL at week 24 and chose to continue study treatment maintained this level of virologic suppression at follow-up 24 weeks later. CONCLUSIONS: APV600 RTV BID was similar to or better than APV1200 BID in virologic response. Virologic results in a small number of patients who continued treatment for 24 weeks post-study suggest that virologic suppression with APV600 RTV BID is durable

    Identification of downstream effectors of retinoic acid specifying the zebrafish pancreas by integrative genomics.

    Full text link
    Retinoic acid (RA) is a key signal for the specification of the pancreas. Still, the gene regulatory cascade triggered by RA in the endoderm remains poorly characterized. In this study, we investigated this regulatory network in zebrafish by combining RNA-seq, RAR ChIP-seq and ATAC-seq assays. By analysing the effect of RA and of the RA receptor (RAR) inverse-agonist BMS493 on the transcriptome and on the chromatin accessibility of endodermal cells, we identified a large set of genes and regulatory regions regulated by RA signalling. RAR ChIP-seq further defined the direct RAR target genes in zebrafish, including hox genes as well as several pancreatic regulators like mnx1, insm1b, hnf1ba and gata6. Comparison of zebrafish and murine RAR ChIP-seq data highlighted the conserved direct target genes and revealed that some RAR sites are under strong evolutionary constraints. Among them, a novel highly conserved RAR-induced enhancer was identified downstream of the HoxB locus and driving expression in the nervous system and in the gut in a RA-dependent manner. Finally, ATAC-seq data unveiled the role of the RAR-direct targets Hnf1ba and Gata6 in opening chromatin at many regulatory loci upon RA treatment

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page
    corecore