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Abstract ADAMs (A Disintegrin And Metalloprotease do-
main) are metalloprotease—disintegrin proteins that have been
implicated in cell adhesion, protein ectodomain shedding, matrix
protein degradation and cell fusion. Since such events are crit-
ical for bone resorption and osteoclast recruitment, we investi-
gated whether they require ADAMs. We report here which
ADAMs we have identified in bone cells, as well as our analysis
of the generation, migration and resorptive activity of osteo-
clasts in developing metatarsals of mouse embryos lacking cat-
alytically active ADAM 17 [TNFa converting enzyme (TACE)].
The absence of TACE activity still allowed the generation of
cells showing an osteoclastic phenotype, but prevented their mi-
gration into the core of the diaphysis and the subsequent for-
mation of marrow cavity. This suggests a role of TACE in the
recruitment of osteoclasts to future resorption sites.

© 2003 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

ADAMs (A Disintegrin And Metalloprotease domain) con-
stitute a family of glycoproteins that are primarily identifiable
by their disintegrin and metalloprotease domains [1,2]. To
date, 34 ADAMs with a transmembrane domain have been
cloned and sequenced. An additional subset of 21 ADAMs
named ADAM TS are not anchored to the cell membrane and
contain additional thrombospondin motifs. The metallopro-
tease domain of ADAMs is also found in matrix metallopro-
teinases (MMPs), and has been implicated in processing or
degradation of extracellular matrix (ECM) proteins as well
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as in cis-shedding of membrane-anchored protein ectodo-
mains. The sheddase activity has been extensively studied
for ADAM 17 [TNFa converting enzyme (TACE)], which
can release various membrane proteins such as TNFa,
TGFoa, p75 TNFR or the L-selectin adhesion molecule [3].
In addition, the disintegrin domain of several ADAMs has
been reported to mediate cell—cell interaction by binding in-
tegrins. Finally, ADAM 1 and 12 show a putative fusion pep-
tide sequence located downstream of the disintegrin domain,
and promote cell fusion during fertilization and myogenesis,
respectively [4,5].

Because ECM degradation, factor ectodomain shedding,
cell binding and cell fusion are all important events in bone,
the hypothesis that ADAMs play a role in bone tissue receives
increasing attention. Bone turnover is controlled by osteo-
clasts and osteoblasts. The bone resorbing osteoclasts are mul-
tinucleated cells easily detected through tartrate resistant acid
phosphatase (TRAP) activity. They are formed by fusion of
hematopoietic mononucleated precursors belonging to the
myeloid lineage [6]. Osteoclast differentiation is triggered by
RANKL, a membrane-anchored member of TNFo family ex-
pressed in bone by stromal/osteoblastic cells, which binds to
its receptor RANK on the surface of osteoclast precursors
[7,8]. Osteoblastic cells express ADAM 9, 10, 12, 15, 19 and
ADAM TS-1 [9-11]. In addition, the latter two are up-regu-
lated by osteotropic agents like 1,25-(OH), vitamin D3 and
PTH [9,11]. In osteoclasts, transcripts of ADAM 8§, 9 and 15
have been detected whereas expression of ADAM 12 is still
questioned [9,12,13]. In vitro studies using soluble recombi-
nant ADAMs, antisense oligonucleotides or neutralizing anti-
bodies suggest the involvement of ADAM 8, 9 and 12 in
osteoclast differentiation but their mechanism of action is still
unclear [12-14]. Finally, the inhibition of osteoclast recruit-
ment in developing metatarsals by metalloproteinase inhibi-
tors demonstrated that activity of metalloproteinases such as
MMPs and ADAMs is needed for the generation of osteoclas-
tic activity [15].

In order to identify further which ADAMs are expressed in
bone cells, we performed reverse transcription-polymerase
chain reaction (RT-PCR) on osteoblastic and osteoclast pre-
cursor cell lines, on osteoclasts isolated from rabbit long
bones, as well as Northern blots on bone tissue. Furthermore,
we examined whether inactivation of the proteolytic domain
of TACE would affect the recruitment and the resorptive ac-
tivity of osteoclasts in developing metatarsals.
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2. Materials and methods

2.1. Knockout mice and cell lines

Mice from DBA/1 background, homozygous for a targeted muta-
tion in TACE metalloprotease active site (TACEA?"/A%") were gener-
ated as described previously [3]. For histological studies, limbs were
taken from TACEAZYAZn 17.5. and 18.5-day-old embryos whereas
controls were from wild-type or heterozygous embryos of the same
litters in order to have animals exactly at the same age. Mouse
MOCP-5 cell line was a gift from Dr. Y.-P. Li (Forsyth Dental Cen-
ter, Boston, MA, USA). MC-3T3-El cell line was from ECACC
(Wiltshire, UK).

2.2. Preparation of rabbit osteoclasts

For RT-PCR, primary osteoclasts were prepared from long bones
of 10-day-old rabbits according to Sato et al. [16]. Briefly, cells iso-
lated from bones were incubated for 2 h at 37°C in «MEM comple-
mented with 5% FBS to allow osteoclasts to attach on plastic, and
then non-adherent cells were removed. The day after, cells were
washed and treated with pronase E (0.001%) and EDTA (0.02%) to
discard contaminating stromal cells and adherent osteoclasts were
washed and used for RNA extraction. These cells have been charac-
terized as a population containing at least 95% primary osteoclasts
[16].

2.3. Amplification of ADAM c¢DNA fragments

Total RNA was extracted from rabbit osteoclasts and mouse cells
by guanidinium/acid-phenol extraction [17]. Single strand cDNA was
synthesized from total RNA by using a cDNA synthesis kit (Pharma-
cia). cDNAs from MOCP-5 and MC-3T3 cells were submitted to PCR
amplification using gene-specific primers (see Table 1). cDNA from
rabbit osteoclasts was amplified by PCR using degenerate primers
corresponding to conserved amino acid sequences in the metallopro-
tease catalytic site, HEXGHX and the disintegrin domain, CGNXXV.
The reactions were cycled 45 times through the following steps: 94°C,
1 min; 55°C, 1 min; 72°C, 1 min. cDNA fragments were then purified,
subcloned and sequenced. The cDNA sequences were compared with
DNA sequences in GenBank and EMBL.

2.4. Northern blot analysis

The DNA probes were made from the PCR fragments generated
with primers specific for ADAM 1, 8, 9, 12, 15, 19, TACE and
ADAM TS-1. They were labelled with 3*P by using the Amersham
rediprime kit protocol (Amersham Pharmacia Biotech). Ten micro-
grams of total RNA isolated from calvariae of E18 mice was blotted
on nylon membranes after formaldehyde agarose gel electrophoresis
and hybridized with radioactive probes in ultrahyb ultrasensitive hy-
bridization buffer (Ambion). After hybridization, membranes were
washed and exposed to Biomax MS X-ray film (Kodak).

2.5. Histology

For analysis of osteoclasts in metatarsals, hindlimbs of mouse em-
bryos were processed, stained for TRAP, and counterstained with
Ehrlich’s hematoxylin according to [15]. For immunohistochemistry,
TRAP staining was omitted. Sections were treated with 0.45% H,O»
in ethanol, 0.1% trypsin, and blocked with casein. Next, they were
incubated overnight at 4°C with a primary anti-RANKL ectodomain
antibody (C-20, Santa Cruz) diluted at 1:200, washed, incubated for
30 min at room temperature with a secondary biotinylated anti-goat
antibody (Sigma) diluted at 1:20, washed again, and treated with
peroxidase-conjugated extravidin (ABC, Vector Elite). RANKL im-

Table 1
Primer sequences for RT-PCR of mouse ADAMs
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Fig. 1. Northern blot analysis of ADAMs in mouse bone. Total
RNA from calvarium of 18-day old mouse embryos were analyzed
by Northern blot for ADAMs. Lower pictures show the correspond-
ing ethidium bromide gels.

munoreactivity was visualized by developing the slides in DAB and
H,0,. Counterstaining was performed with Ehrlich’s hemeatoxylin.

3. Results

3.1. Expression of ADAMs in osteoblastic and osteoclastic cells
and bone tissue

To get insight into the potential role of ADAMs in bone,
we first analyzed which ADAMs are expressed in bone cells
(Table 2). We performed RT-PCR with specific primers on
transcripts of MOCP-5, a mouse osteoclast precursor cell
line reported to form 95% TRAP positive multinucleated cells
when cocultured with osteoclast-inductive MS12 stromal cells
in presence of 1,25-(OH), vitamin Dj; [18] and MC-3T3-El, a
mouse osteoblastic cell line that develops into mature osteo-
blasts [19]. We found that ADAM 1, 8,9, 12, 15, 19, TS-1 and
TACE were all expressed in osteoblasts and osteoclast precur-
sors. We then examined ADAMs expression in osteoclasts. As
cell differentiation in cultures can induce non-specific gene
regulation, we used primary osteoclasts from rabbit long
bones that can be obtained in high yield and purity. Using
degenerate primers designed from consensus sequences in the
metalloprotease and disintegrin domains, we found that
cDNA fragments amplified by RT-PCR from RNA of mature
rabbit osteoclasts corresponded to ADAM 1, 9 and TACE
sequences. We could however not exclude that osteoclasts ex-
pressed more ADAMs, since using degenerate primers may
favor the amplification of only some of them.

To verify that ADAMs identified by RT-PCR are expressed
in bone tissue, we performed Northern blot analysis with
RNAs extracted from calvaria of E18 mice, a developmental
stage where the calvarium undergoes important bone turn-

Target mRNA Primer sequences

ADAM 1 sense: 5'-CTAATGCTGATCGCCTAC-3'; antisense: 5’ -CAGGAGCTGACAGGGGC-3’
ADAM 8 sense: 5'-GACTGGAGGGACGGTGC-3’; antisense: 5'-CTGGTTCATGAGGGCATC-3’
ADAM 9 sense: 5'-AGCAGCCTGCGCAGTTC-3'; antisense: 5'-CCACTAGGCTCCTGTGT-3’
ADAM 12 sense: 5'-CAGTGTCCACTAAGGATGC-3’; antisense: 5'-CATGCTGGCTATTGGGTC-3’
ADAM 15 sense: 5'-CTGCAGCATCTTCGCTC-3'; antisense: 5'-CAGCATCCCGCTGCAGC-3’
TACE sense: 5'-AGCTGCAGCGTCAGAGC-3’; antisense: 5'-CAGCACTGTCACCAGGAAC-3’
ADAM 19 sense: 5'-CTAGCCAAGAGCTACCAGC-3’; antisense: 5'-CTGCTGTCTATGCTACTTAC-3'

ADAM TS-1 sense: 5'-TGCACACTGACACAGTGC-3'; antisense: 5'-CAGATGCTACTGTGCCTC-3’
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Fig. 2. Osteoclast distribution in sections through the diaphysis of metatarsals of TAC

EAZn /AZn

and control embryos. Sections were obtained in

metatarsals of E18.5 TACEAZ"/AZn mjce (B), and of control littermates (A); po, periosteum; bc, bone collar; cc, calcified cartilage. Osteoclasts
were detected by TRAP straining (red). In controls (A), osteoclasts (black arrows) have invaded the core of the diaphysis and resorb the septae.
In TACEAZ/AZn (B), osteoclasts (white arrows) remained at the vicinity of the bone collar. Bar: 40 pm.

over (Fig. 1). ADAM 8, 9, 12, 15, TS-1 and TACE were all
found whereas expression of ADAM 1 and 19 could not be
confirmed .

Overall our study thus strengthens previous evidence for
ADAM 8, 9, 12, 15, TS-1 in bone tissue, and identifies
TACE for the first time in bone tissue cells.

3.2. Role of TACE in osteoclast recruitment and activity during
development of long bones

Recently, there is a lot of attention for the sheddase activity
of TACE towards membrane proteins, including cytokine,
growth factor, cytokine receptor and cell adhesion molecule
[3]. Our present discovery of TACE in osteoblasts, osteoclastic
cells and bone tissue, prompted us to investigate its role in
developing metatarsals. Interestingly, between E16 and E18.5,
metatarsals show cellular activities where ADAMs could be
involved, and at this stage, metalloproteinase activity proved
indispensable for their development [15]. During this period,
osteoclast precursors located outside the diaphysis differenti-
ate into TRAP+ mononucleated cells, fuse to form TRAP+
multinucleated osteoclasts, migrate into the future bone mar-
row cavity, and start digesting the calcified matrix [15]. We
therefore investigated the effect of TACE inactivation on os-
teoclast recruitment by comparing the distribution of TRAP+
cells in metatarsals of mouse embryos genetically generated
with a catalytically inactive TACE and of control littermates.

E18.5 metatarsals of control littermates showed the typical
features of this developmental stage: multinucleated TRAP+
osteoclasts had crossed the bone collar and were mainly inside
the core of the diaphysis (Fig. 2A, arrows). Septae of calcified
matrix were partially degraded in some regions next to osteo-
clasts indicating the beginning of the formation of the future
marrow cavity. In sections of E18.5 TACEA%"/AZn metatarsals,
multinucleated TRAP+ cells were also found (Fig. 2B, ar-
rows) but only within the bone collar, not further inside the
core of the diaphysis. This peculiar distribution of TRAP
positive cells was observed in all TACEA%0/AZ0 mjce used for
this study (percentage of TRAP positive cells in the core of
the diaphysis: 79.68% £ 11.4 in control embryos versus 0% in
TACEA?"/A%n Jittermates; mean +S.D. representative of six
animals of each group taken from three different litters).
These observations indicate that proteinase activity of
TACE is not required for the generation of multinucleated
TRAP+ cells but contributes significantly to the migration
of these cells through the core of the diaphysis as is required
for the development of the marrow cavity.

Because it was recently suggested that TACE could shed
biologically active RANKL [20] and RANKL has deep effects
on osteoclasts, including chemotaxis [21], it was of interest to
investigate whether there is a relation between the impaired
migration of osteoclasts and possible effects of TACE on the
tissue distribution of RANKL. Therefore, we immunostained

Table 2
RT-PCR analysis of ADAMs in bone cells

ADAM

1 8 9 12 15 TACE 19 TS-1
Rabbit primary OC + ND + ND ND + ND ND
MOCP-5 (mouse OC precursors) + + + + + + + +
MC-3T3 (mouse OB) + + + + + + + +

RT-PCR amplifications of RNA from rabbit osteoclasts and from mouse cells were performed with degenerated and specific primers, respec-
tively. PCR products were sequenced for verification. ND: Not determined.
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Fig. 3. Immunostaining of RANKL in TACEA%"/2Z" and control metatarsals. RANKL distribution was examined by immunohistochemistry in
the diaphysis of metatarsals of E17.5 TACEA%"/A%0 mice (B) and control littermates (A). Negative controls were performed in control metatar-
sals sections with a primary non-immune antibody (C). RANKL immunoreactivity showed an intense signal (brown color) restricted to bone
collar whether in controls (black arrows in A) or in TACEA?"/A%" (black arrows in B). Bar: 40 um.

RANKL in E17.5 metatarsals, i.e. when differentiation and
migration of osteoclasts just start. We found that in
TACEAZ/AZn g control metatarsals, RANKL showed the
same distribution in the bone collar region, (Fig. 3A,B) ex-
actly where osteoclasts are generated. These observations do
not support a TACE-shedding-dependent redistribution of
RANKL in metatarsals.

4. Discussion

Osteoclasts have a short life, and continuous recruitment of
osteoclasts is critical for bone (re)modelling. Metalloprotein-
ases are an important component of the osteoclast recruitment
mechanism in primitive long bones [15]. The present study
reveals that one of the critical metalloproteinases in this pro-
cess is TACE.

The biological events required by this recruitment are the
generation of preosteoclasts in the soft tissue surrounding the
bone, their fusion, and their migration into the core of the
diaphysis. It is clear that the role of TACE is related to the
latter migration, because the absence of TACE proteolytic
activity still allows the generation of multinucleated cells
with a typical osteoclast phenotype in the surrounding soft
tissue, but prevents their migration into the core of the dia-
physis. A contribution of TACE to cell migration and bone
development had never been reported before, in contrast, the
involvement of TACE in epithelial maturation was stressed at
the level of many organs, such as eye, skin, intestine, or lung
[3].

The potential direct or indirect molecular mechanism of
action of TACE in osteoclast migration is still unknown, as
well as its cellular source. TACE is a well-known sheddase,
which has been implicated in the release of a series of cyto-
kines and growth factors, including members of the TNFa
family [3,20]. RANKL belongs to the TNFo family and there
are indications that TACE may also promote RANKL shed-
ding [20]. Furthermore, RANKL exerts chemotaxis on osteo-
clasts [21]. Taking into account these observations, it may be
considered that TACE-induced shedding of RANKL by
neighboring cells is important for osteoclast migration into
primitive long bones. However, we could not provide evidence
supporting this hypothesis, since we found a similar distribu-

tion of RANKL immunoreactivity in TACEA%"/A2 and con-
trol embryos. The absence of changes in RANKL pattern in
bone when TACE proteolytic domain is inactivated may in-
dicate that TACE is not the only RANKL sheddase as it has
been suggested by other more recent studies [22,23]. Alterna-
tively, one could speculate that TACE promotes migration of
osteoclasts by a process of ECM degradation as reported for
ADAM 10 and 15, which both can degrade type IV collagen
in vitro [24,25]. However, only sheddase activity has been
ascribed to TACE so far.

It is of interest that TACE is the third metalloproteinase
after MMP9 and MTI1-MMP, found limiting for the migra-
tion of osteoclasts into primitive long bones [26,27]. This thus
stresses the complexity of the proteolytic mechanisms control-
ling the recruitment process of osteoclasts. Other ADAMs
have been implicated in the recruitment of osteoclasts, as
based on in vitro observations. ADAM 8 promotes osteoclast
differentiation whereas antisense is inhibitory, and this effect
was ascribed to its disintegrin domain [13]. ADAM 12 anti-
sense inhibits the differentiation of osteoclast-like cells gener-
ated in cocultures of bone marrow cells with osteoblasts [12].
It was speculated that this effect was related to its predicted
fusion peptide sequence and to its putative role in formation
of myotubes [5]. Finally, anti-ADAM 9 antibody suppressed
RANKL-induced formation of multinucleated giant cells
from human blood monocytes in vitro, suggesting that
ADAM 9 could be involved in osteoclast differentiation [14].

In conclusion, we found that TACE is limiting for osteo-
clast recruitment in developing bones. Information on the role
of other ADAMs found in bone tissue is awaiting more ob-
servations especially on the existing ADAM 1, 9, 15, 19, and
ADAM TS-1 knockouts, although skeletal phenotypes for
these knockouts have not been reported yet.
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