40 research outputs found

    The nitrogen-vacancy center in diamond re-visited

    Full text link
    Symmetry considerations are used in presenting a model of the electronic structure and the associated dynamics of the nitrogen-vacancy center in diamond. The model accounts for the occurrence of optically induced spin polarization, for the change of emission level with spin polarization and for new measurements of transient emission. The rate constants given are in variance to those reported previously.Comment: 12 pages 10 figure

    A waveguide atom beamsplitter for laser-cooled neutral atoms

    Get PDF
    A laser-cooled neutral-atom beam from a low-velocity intense source is split into two beams while guided by a magnetic-field potential. We generate our multimode-beamsplitter potential with two current-carrying wires on a glass substrate combined with an external transverse bias field. The atoms bend around several curves over a 1010-cm distance. A maximum integrated flux of 1.5105atoms/s1.5\cdot10^{5} \mathrm{atoms/s} is achieved with a current density of 5104Ampere/cm25\cdot10^{4} \mathrm{Ampere/cm^{2}} in the 100-μm\mathrm{\mu m} diameter wires. The initial beam can be split into two beams with a 50/50 splitting ratio

    Novel Ferromagnetic Atom Waveguide with in situ loading

    Get PDF
    Magneto-optic and magnetostatic trapping is realized near a surface using current carrying coils wrapped around magnetizable cores. A cloud of 10^7 Cesium atoms is created with currents less than 50 mA. Ramping up the current while maintaining optical dissipation leads to tightly confined atom clouds with an aspect ratio of 1:1000. We study the 3D character of the magnetic potential and characterize atom number and density as a function of the applied current. The field gradient in the transverse dimension has been varied from < 10 G/cm to > 1 kG/cm. By loading and cooling atoms in-situ, we have eliminated the problem of coupling from a MOT into a smaller phase space.Comment: 4 pages, 4 figure

    Noise limits in matter-wave interferometry using degenerate quantum gases

    Full text link
    We analyze the phase resolution limit of a Mach-Zehnder atom interferometer whose input consists of degenerate quantum gases of either bosons or fermions. For degenerate gases, the number of atoms within one de Broglie wavelength is larger than unity, so that atom-atom interactions and quantum statistics are no longer negligible. We show that for equal atom numbers, the phase resolution achievable with fermions is noticeably better than for interacting bosons.Comment: 4 pages, 5 figure

    Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale system for solid-state quantum information processing. Its spin-dependent photoluminescence has enabled sensitive measurements on single N-V centers, such as: electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room temperature spin coherence times as long as 58 microseconds have been reported for N-V center ensembles. Here, we have developed an angle-resolved magneto-photoluminescence microscopy apparatus to investigate the anisotropic electron spin interactions of single N-V centers at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighboring dark nitrogen spins that are not otherwise detected by photoluminescence. The latter results demonstrate a means of investigating small numbers of dark spins via a single bright spin under ambient conditions.Comment: 13 pages, 4 figure

    Quantum Theory in Accelerated Frames of Reference

    Get PDF
    The observational basis of quantum theory in accelerated systems is studied. The extension of Lorentz invariance to accelerated systems via the hypothesis of locality is discussed and the limitations of this hypothesis are pointed out. The nonlocal theory of accelerated observers is briefly described. Moreover, the main observational aspects of Dirac's equation in noninertial frames of reference are presented. The Galilean invariance of nonrelativistic quantum mechanics and the mass superselection rule are examined in the light of the invariance of physical laws under inhomogeneous Lorentz transformations.Comment: 25 pages, no figures, contribution to Springer Lecture Notes in Physics (Proc. SR 2005, Potsdam, Germany, February 13 - 18, 2005

    Superfluid rotation sensor with helical laser trap

    Full text link
    The macroscopic quantum states of the dilute bosonic ensemble in helical laser trap at the temperatures about 106K10^{-6}\bf {K} are considered in the framework of the Gross-Pitaevskii equation. The helical interference pattern is composed of the two counter propagating Laguerre-Gaussian optical vortices with opposite orbital angular momenta \ell \hbar and this pattern is driven in rotation via angular Doppler effect. Macroscopic observables including linear momentum and angular momentum of the atomic cloud are evaluated explicitly. It is shown that rotation of reference frame is transformed into translational motion of the twisted matter wave. The speed of translation equals the group velocity of twisted wavetrain Vz=Ω/kV_z= \Omega\ell/ k and alternates with a sign of the frame angular velocity Ω\Omega and helical pattern handedness \ell. We address detection of this effect using currently accessible laboratory equipment with emphasis on the difference between quantum and classical fluids.Comment: 8 pages, 3 figures, accepted to publication Journ.Low Temp.Phy

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Contract DAAL03-92-C-0001Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY 92-22768U.S. Army - Office of Scientific Research Grant DAAL03-92-G-0229U.S. Army - Office of Scientific Research Grant DAAL01-92-6-0197U.S. Navy - Office of Naval Research Grant N00014-89-J-1207Alfred P. Sloan FoundationU.S. Navy - Office of Naval Research Grant N00014-90-J-1642U.S. Navy - Office of Naval Research Grant N00014-94-1-080

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY 92-22768Charles S. Draper Laboratory Contract DL-H-4847759U.S. Army - Office of Scientific Research Grant DAAL03-92-G-0229U.S. Army - Office of Scientific Research Grant DAAL01-92-6-0197U.S. Navy - Office of Naval Research Grant N00014-89-J-1207Alfred P. Sloan FoundationNational Science Foundation Grant PHY 95-01984U.S. Army Research Office Contract DAAL01-92-C-0001U.S. Navy - Office of Naval Research Grant N00014-90-J-1642U.S. Navy - Office of Naval Research Grant N00014-94-1-080
    corecore