25 research outputs found

    Exome Sequencing and Rare Variant Analysis Reveals Multiple Filaggrin Mutations in Bangladeshi Families with Atopic Eczema and Additional Risk Genes

    Get PDF
    M.P was supported by a Fellowship from the German Research Foundation (DFG). This work received infrastructure support through the DFG Cluster of Excellence “Inflammation at Interfaces” (grants EXC306 and EXC306/2), and was supported by grants (WE2678/6-1, WE2678/6-2, WE2678/9) from the DFG and the e:Med sysINFLAME grant no. 01ZX1306A from the German Federal Ministry of Education and Research (BMBF). J.E.A.C. and X.F.C.C.W. are funded by A*STAR SPF funding for translational skin research and genetic orphan disease

    Re-annotation of 191 developmental and epileptic encephalopathy-associated genes unmasks de novo variants in SCN1A

    Get PDF
    Funder: Agency for Innovation by Science and Technology, IWTFunder: U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)Funder: BOF-University of Antwerp (FFB180053) and FWO (1861419N).Abstract: The developmental and epileptic encephalopathies (DEE) are a group of rare, severe neurodevelopmental disorders, where even the most thorough sequencing studies leave 60–65% of patients without a molecular diagnosis. Here, we explore the incompleteness of transcript models used for exome and genome analysis as one potential explanation for a lack of current diagnoses. Therefore, we have updated the GENCODE gene annotation for 191 epilepsy-associated genes, using human brain-derived transcriptomic libraries and other data to build 3,550 putative transcript models. Our annotations increase the transcriptional ‘footprint’ of these genes by over 674 kb. Using SCN1A as a case study, due to its close phenotype/genotype correlation with Dravet syndrome, we screened 122 people with Dravet syndrome or a similar phenotype with a panel of exon sequences representing eight established genes and identified two de novo SCN1A variants that now - through improved gene annotation - are ascribed to residing among our exons. These two (from 122 screened people, 1.6%) molecular diagnoses carry significant clinical implications. Furthermore, we identified a previously classified SCN1A intronic Dravet syndrome-associated variant that now lies within a deeply conserved exon. Our findings illustrate the potential gains of thorough gene annotation in improving diagnostic yields for genetic disorders

    The future role of genetic screening to detect newborns at risk of childhood-onset hearing loss

    Get PDF
    OBJECTIVE: To explore the future potential of genetic screening to detect newborns at risk of childhood-onset hearing loss. DESIGN: An expert led discussion of current and future developments in genetic technology and the knowledge base of genetic hearing loss to determine the viability of genetic screening and the implications for screening policy. RESULTS AND DISCUSSION: Despite increasing pressure to adopt genetic technologies, a major barrier for genetic screening in hearing loss is the uncertain clinical significance of the identified mutations and their interactions. Only when a reliable estimate of the future risk of hearing loss can be made at a reasonable cost, will genetic screening become viable. Given the speed of technological advancement this may be within the next 10 years. Decision-makers should start to consider how genetic screening could augment current screening programmes as well as the associated data processing and storage requirements. CONCLUSION: In the interim, we suggest that decision makers consider the benefits of (1) genetically testing all newborns and children with hearing loss, to determine aetiology and to increase knowledge of the genetic causes of hearing loss, and (2) consider screening pregnant women for the m.1555A> G mutation to reduce the risk of aminoglycoside antibiotic-associated hearing loss

    A Third Novel Locus for Primary Autosomal Recessive Microcephaly Maps to Chromosome 9q34

    Get PDF
    Primary autosomal recessive microcephaly is a clinical diagnosis of exclusion in an individual with a head circumference ⩾4 SDs below the expected age-and-sex mean. There is associated moderate mental retardation, and neuroimaging shows a small but structurally normal cerebral cortex. The inheritance pattern in the majority of cases is considered to be autosomal recessive. Although genetic heterogeneity for this clinical phenotype had been expected, this has only recently been demonstrated, with the mapping of two loci for autosomal recessive primary microcephaly: MCPH1 at 8p and MCPH2 at 19q. We have studied a large multiaffected consanguineous pedigree, using a whole-genome search, and have identified a third locus, MCPH3 at 9q34. The minimal critical region is ∼12 cM, being defined by the markers cen-D9S1872-D9S159-tel, with a maximum two-point LOD score of 3.76 (recombination fraction 0) observed for the marker D9S290

    Extent and Distribution of Linkage Disequilibrium in Three Genomic Regions

    Get PDF
    The positional cloning of genes underlying common complex diseases relies on the identification of linkage disequilibrium (LD) between genetic markers and disease. We have examined 127 polymorphisms in three genomic regions in a sample of 575 chromosomes from unrelated individuals of British ancestry. To establish phase, 800 individuals were genotyped in 160 families. The fine structure of LD was found to be highly irregular. Forty-five percent of the variation in disequilibrium measures could be explained by physical distance. Additional factors, such as allele frequency, type of polymorphism, and genomic location, explained <5% of the variation. Nevertheless, disequilibrium was occasionally detectable at 500 kb and was present for over one-half of marker pairs separated by <50 kb. Although these findings are encouraging for the prospects of a genomewide LD map, they suggest caution in interpreting localization due to allelic association

    Neurological features of epilepsy, ataxia, sensorineural deafness, tubulopathy syndrome

    Get PDF
    AIM: Recently, we reported a previously unrecognized symptom constellation comprising epilepsy, ataxia, sensorineural deafness, and tubulopathy (EAST syndrome) associated with recessive mutations in the KCNJ10 gene. Here, we provide a detailed characterization of the clinical features of the syndrome to aid patient management with respect to diagnosis, prognostic counselling, and identification of best treatment modalities. METHOD: We conducted a retrospective review of the detailed neurological and neuroradiological features of nine children (four females, five males; age range at last examination 6–20y) with genetically proven EAST syndrome. RESULTS: All children presented with tonic–clonic seizures in infancy. Later, non-progressive, cerebellar ataxia and hearing loss were noted. Whilst seizures mostly responded well to treatment, ataxia proved to be the most debilitating feature, with three patients non-ambulant. All available magnetic resonance imaging (MRI) revealed subtle symmetrical signal changes in the cerebellar dentate nuclei. Moreover, four patients had a small corpus callosum and brainstem hypoplasia, and three had a small spinal cord. Regional quantitative volumetric analysis of the images confirmed the corpus callosum and brainstem hypoplasia and showed further patterns of variation from the norm. INTERPRETATION: The neurological features of EAST syndrome appear to be non-progressive, which is important for prognostic counselling. The spectrum of EAST syndrome includes consistent abnormalities on brain MRI, which may aid diagnosis. Further longitudinal documentation is required to determine the true natural history of the disorder

    KCNJ10 mutations display differential sensitivity to heteromerisation with KCNJ16

    Get PDF
    BACKGROUND/AIMS: Mutations in the inwardly-rectifying K(+)-channel KCNJ10/Kir4.1 cause autosomal recessive EAST syndrome (epilepsy, ataxia, sensorineural deafness and tubulopathy). KCNJ10 is expressed in the distal convoluted tubule of the kidney, stria vascularis of the inner ear and brain glial cells. Patients diagnosed clinically with EAST syndrome were genotyped and mutations in KCNJ10 were studied functionally. METHODS: Patient DNA was amplified and sequenced, and new mutations were identified. Mutant and wild-type KCNJ10 constructs were cloned and heterologously expressed in Xenopus oocytes. Whole-cell K(+) currents were measured by 2-electrode voltage clamping and channel expression was analysed by Western blotting. RESULTS: We identified 3 homozygous mutations in KCNJ10 (p.F75C, p.A167V and p.V91fs197X), with mutation p.A167V previously reported in a compound heterozygous state. Oocytes expressing wild-type human KCNJ10 showed inwardly rectified currents, which were significantly reduced in all of the mutants (p < 0.001). Specific inhibition of KCNJ10 currents by Ba(2+) demonstrated a large residual function in p.A167V only, which was not compatible with causing disease. However, co-expression with KCNJ16 abolished function in these heteromeric channels almost completely. CONCLUSION: This study provides an explanation for the pathophysiology of the p.A167V KCNJ10 mutation, which had previously not been considered pathogenic on its own. These findings provide evidence for the functional cooperation of KCNJ10 and KCNJ16. Thus, in vitro ascertainment of KCNJ10 function may necessitate co-expression with KCNJ16
    corecore