801 research outputs found

    Mediating Artificial Intelligence Developments through Negative and Positive Incentives

    Get PDF
    The field of Artificial Intelligence (AI) is going through a period of great expectations, introducing a certain level of anxiety in research, business and also policy. This anxiety is further energised by an AI race narrative that makes people believe they might be missing out. Whether real or not, a belief in this narrative may be detrimental as some stake-holders will feel obliged to cut corners on safety precautions, or ignore societal consequences just to "win". Starting from a baseline model that describes a broad class of technology races where winners draw a significant benefit compared to others (such as AI advances, patent race, pharmaceutical technologies), we investigate here how positive (rewards) and negative (punishments) incentives may beneficially influence the outcomes. We uncover conditions in which punishment is either capable of reducing the development speed of unsafe participants or has the capacity to reduce innovation through over-regulation. Alternatively, we show that, in several scenarios, rewarding those that follow safety measures may increase the development speed while ensuring safe choices. Moreover, in the latter regimes, rewards do not suffer from the issue of over-regulation as is the case for punishment. Overall, our findings provide valuable insights into the nature and kinds of regulatory actions most suitable to improve safety compliance in the contexts of both smooth and sudden technological shifts

    Achromatic Four Quadrant Phase Mask Coronagraph using the Dispersion of Form Birefringence

    Get PDF
    We describe an alternative design for the 4-quadrant phase mask coronagraph described recently by Rouan et al. 2000. Based on the same principle, i.e. producing a very efficient nulling by mutually destructive interferences of the coherent light from the main source, our mask realises the pi phase shift using some properties of ZOGs (Zeroth Order Gratings) and according to an original scheme respecting the 4-quadrant symmetry. When the period of the one-dimension grating structure is smaller than the wavelength of the incident light, the structure becomes birefringent. The effective refractive indices depend on the wavelength. Using this feature, we can design a mask whose nulling efficiency is maintained within a wide wavelength range. Numerical simulations were made according to the RCWT (Rigorous Coupled Wave Theory)

    To regulate or not:A social dynamics analysis of an idealised ai race

    Get PDF
    Rapid technological advancements in Artificial Intelligence (AI), as well as the growing deployment of intelligent technologies in new application domains, have generated serious anxiety and a fear of missing out among different stake-holders, fostering a racing narrative. Whether real or not, the belief in such a race for domain supremacy through AI, can make it real simply from its consequences, as put forward by the Thomas theorem. These consequences may be negative, as racing for technological supremacy creates a complex ecology of choices that could push stake-holders to underestimate or even ignore ethical and safety procedures. As a consequence, different actors are urging to consider both the normative and social impact of these technological advancements, contemplating the use of the precautionary principle in AI innovation and research. Yet, given the breadth and depth of AI and its advances, it is difficult to assess which technology needs regulation and when. As there is no easy access to data describing this alleged AI race, theoretical models are necessary to understand its potential dynamics, allowing for the identification of when procedures need to be put in place to favour outcomes beneficial for all. We show that, next to the risks of setbacks and being reprimanded for unsafe behaviour, the time-scale in which domain supremacy can be achieved plays a crucial role. When this can be achieved in a short term, those who completely ignore the safety precautions are bound to win the race but at a cost to society, apparently requiring regulatory actions. Our analysis reveals that imposing regulations for all risk and timing conditions may not have the anticipated effect as only for specific conditions a dilemma arises between what is individually preferred and globally beneficial. Similar observations can be made for the long-term development case. Yet different from the short-term situation, conditions can be identified that require the promotion of risk-taking as opposed to compliance with safety regulations in order to improve social welfare. These results remain robust both when two or several actors are involved in the race and when collective rather than individual setbacks are produced by risk-taking behaviour. When defining codes of conduct and regulatory policies for applications of AI, a clear understanding of the time-scale of the race is thus required, as this may induce important non-trivial effects.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Validation of Two Nonlinear System Identification Techniques Using an Experimental Testbed

    Get PDF
    The identification of a nonlinear system is performed using experimental data and two different techniques, i.e. a method based on the Wavelet transform and the Restoring Force Surface method. Both techniques exploit the system free response and result in the estimation of linear and nonlinear physical parameters

    Achromatic Four Quadrant Phase Mask Coronagraph using the Dispersion of Form Birefringence

    Get PDF
    We describe an alternative design for the 4-quadrant phase mask coronagraph described recently by Rouan et al. 2000. Based on the same principle, i.e. producing a very efficient nulling by mutually destructive interferences of the coherent light from the main source, our mask realises the pi phase shift using some properties of ZOGs (Zeroth Order Gratings) and according to an original scheme respecting the 4-quadrant symmetry. When the period of the one-dimension grating structure is smaller than the wavelength of the incident light, the structure becomes birefringent. The effective refractive indices depend on the wavelength. Using this feature, we can design a mask whose nulling efficiency is maintained within a wide wavelength range. Numerical simulations were made according to the RCWT (Rigorous Coupled Wave Theory)

    Binary properties of CH and Carbon-Enhanced Metal-Poor stars

    Full text link
    The HERMES spectrograph installed on the 1.2-m Mercator telescope has been used to monitor the radial velocity of 13 low-metallicity carbon stars, among which 7 Carbon-Enhanced Metal-Poor (CEMP) stars and 6 CH stars. All stars but one show clear evidence for binarity. New orbits are obtained for 8 systems. The sample covers an extended range in orbital periods, extending from 3.4 d (for the dwarf carbon star HE 0024-2523) to about 54 yr (for the CH star HD 26, the longest known among barium, CH and extrinsic S stars). Three systems exhibit low-amplitude velocity variations with periods close to 1 yr superimposed on a long-term trend. In the absence of an accurate photometric monitoring of these systems, it is not clear yet whether these variations are the signature of a very low-mass companion, or of regular envelope pulsations. The period - eccentricity (P - e) diagram for the 40 low-metallicity carbon stars with orbits now available shows no difference between CH and CEMP-s stars (the latter corresponding to those CEMP stars enriched in s-process elements, as are CH stars). We suggest that they must be considered as one and the same family and that their different names only stem from historical reasons. Indeed, these two families have as well very similar mass-function distributions, corresponding to companions with masses in the range 0.5 - 0.7 Msun, indicative of white-dwarf companions, adopting 0.8 - 0.9 Msun for the primary component. This result confirms that CH and CEMP-s stars obey the same mass-transfer scenario as their higher-metallicity analogs, the barium stars. The P - e diagrams of barium, CH and CEMP-s stars are indeed very similar. They reveal two different groups of systems: one with short orbital periods (P < 1000 d) and mostly circular or almost circular orbits, and another with longer-period and eccentric (e > 0.1) orbits.Comment: Accepted in Astronomy & Astrophysic

    Artificial intelligence development races in heterogeneous settings

    Get PDF
    Regulation of advanced technologies such as Artificial Intelligence (AI) has become increasingly important, given the associated risks and apparent ethical issues. With the great benefits promised from being able to first supply such technologies, safety precautions and societal consequences might be ignored or shortchanged in exchange for speeding up the development, therefore engendering a racing narrative among the developers. Starting from a game-theoretical model describing an idealised technology race in a fully connected world of players, here we investigate how different interaction structures among race participants can alter collective choices and requirements for regulatory actions. Our findings indicate that, when participants portray a strong diversity in terms of connections and peer-influence (e.g., when scale-free networks shape interactions among parties), the conflicts that exist in homogeneous settings are significantly reduced, thereby lessening the need for regulatory actions. Furthermore, our results suggest that technology governance and regulation may profit from the world’s patent heterogeneity and inequality among firms and nations, so as to enable the design and implementation of meticulous interventions on a minority of participants, which is capable of influencing an entire population towards an ethical and sustainable use of advanced technologies
    • …
    corecore