15 research outputs found

    Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis.

    Get PDF
    BACKGROUND: Frontotemporal dementia is a highly heritable neurodegenerative disorder. In about a third of patients, the disease is caused by autosomal dominant genetic mutations usually in one of three genes: progranulin (GRN), microtubule-associated protein tau (MAPT), or chromosome 9 open reading frame 72 (C9orf72). Findings from studies of other genetic dementias have shown neuroimaging and cognitive changes before symptoms onset, and we aimed to identify whether such changes could be shown in frontotemporal dementia. METHODS: We recruited participants to this multicentre study who either were known carriers of a pathogenic mutation in GRN, MAPT, or C9orf72, or were at risk of carrying a mutation because a first-degree relative was a known symptomatic carrier. We calculated time to expected onset as the difference between age at assessment and mean age at onset within the family. Participants underwent a standardised clinical assessment and neuropsychological battery. We did MRI and generated cortical and subcortical volumes using a parcellation of the volumetric T1-weighted scan. We used linear mixed-effects models to examine whether the association of neuropsychology and imaging measures with time to expected onset of symptoms differed between mutation carriers and non-carriers. FINDINGS: Between Jan 30, 2012, and Sept 15, 2013, we recruited participants from 11 research sites in the UK, Italy, the Netherlands, Sweden, and Canada. We analysed data from 220 participants: 118 mutation carriers (40 symptomatic and 78 asymptomatic) and 102 non-carriers. For neuropsychology measures, we noted the earliest significant differences between mutation carriers and non-carriers 5 years before expected onset, when differences were significant for all measures except for tests of immediate recall and verbal fluency. We noted the largest Z score differences between carriers and non-carriers 5 years before expected onset in tests of naming (Boston Naming Test -0·7; SE 0·3) and executive function (Trail Making Test Part B, Digit Span backwards, and Digit Symbol Task, all -0·5, SE 0·2). For imaging measures, we noted differences earliest for the insula (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume was 0·80% in mutation carriers and 0·84% in non-carriers; difference -0·04, SE 0·02) followed by the temporal lobe (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume 8·1% in mutation carriers and 8·3% in non-carriers; difference -0·2, SE 0·1). INTERPRETATION: Structural imaging and cognitive changes can be identified 5-10 years before expected onset of symptoms in asymptomatic adults at risk of genetic frontotemporal dementia. These findings could help to define biomarkers that can stage presymptomatic disease and track disease progression, which will be important for future therapeutic trials. FUNDING: Centres of Excellence in Neurodegeneration

    Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: A cross-sectional analysis

    Get PDF
    Background: Frontotemporal dementia is a highly heritable neurodegenerative disorder. In about a third of patients, the disease is caused by autosomal dominant genetic mutations usually in one of three genes: progranulin (. GRN), microtubule-associated protein tau (. MAPT), or chromosome 9 open reading frame 72 (. C9orf72). Findings from studies of other genetic dementias have shown neuroimaging and cognitive changes before symptoms onset, and we aimed to identify whether such changes could be shown in frontotemporal dementia. Methods: We recruited participants to this multicentre study who either were known carriers of a pathogenic mutation in GRN, MAPT, or C9orf72, or were at risk of carrying a mutation because a first-degree relative was a known symptomatic carrier. We calculated time to expected onset as the difference between age at assessment and mean age at onset within the family. Participants underwent a standardised clinical assessment and neuropsychological battery. We did MRI and generated cortical and subcortical volumes using a parcellation of the volumetric T1-weighted scan. We used linear mixed-effects models to examine whether the association of neuropsychology and imaging measures with time to expected onset of symptoms differed between mutation carriers and non-carriers. Findings: Between Jan 30, 2012, and Sept 15, 2013, we recruited participants from 11 research sites in the UK, Italy, the Netherlands, Sweden, and Canada. We analysed data from 220 participants: 118 mutation carriers (40 symptomatic and 78 asymptomatic) and 102 non-carriers. For neuropsychology measures, we noted the earliest significant differences between mutation carriers and non-carriers 5 years before expected onset, when differences were significant for all measures except for tests of immediate recall and verbal fluency. We noted the largest Z score differences between carriers and non-carriers 5 years before expected onset in tests of naming (Boston Naming Test -0·7; SE 0·3) and executive function (Trail Making Test Part B, Digit Span backwards, and Digit Symbol Task, all -0·5, SE 0·2). For imaging measures, we noted differences earliest for the insula (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume was 0·80% in mutation carriers and 0·84% in non-carriers; difference -0·04, SE 0·02) followed by the temporal lobe (at 10 years before expected symptom onset, mean volume as a percentage of total intracranial volume 8·1% in mutation carriers and 8·3% in non-carriers; difference -0·2, SE 0·1). Interpretation: Structural imaging and cognitive changes can be identified 5-10 years before expected onset of symptoms in asymptomatic adults at risk of genetic frontotemporal dementia. These findings could help to define biomarkers that can stage presymptomatic disease and track disease progression, which will be important for future therapeutic trials. Funding: Centres of Excellence in Neurodegenerati

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    Phenotypic variability and neuropsychological findings associated with C9orf72 repeat expansions in a Bulgarian dementia cohort.

    No full text
    BACKGROUND:The GGGGCC repeat expansion in the C9orf72 gene was recently identified as a major cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in several European populations. The objective of this study was to determine the frequency of C9orf72 repeat expansions in a Bulgarian dementia cohort and to delineate the associated clinical features. METHODS AND FINDINGS:PCR-based assessments of the C9orf72 hexanucleotide repeat expansion in all study samples (including 82 FTD, 37 Alzheimer's disease (AD), and 16 other neurodegenerative/dementia disorder cases) were performed. We report the clinical, neuropsychological, and neuroimaging findings obtained for the C9orf72 repeat expansion carriers. Of the 135 cases screened, 3/82 (3.7%) of all FTD cases and 1/37 (2.7%) of all clinical AD cases had a C9orf72 repeat expansion. In this cohort, the C9orf72 pathological expansion was found in clinical diagnoses bridging the FTD, parkinsonism, ALS and AD spectrum. Interestingly, we showed early writing errors without aphasia in two subjects with C9orf72 expansions. CONCLUSIONS:This study represents the first genetic screening for C9orf72 repeat expansions in a Bulgarian dementia cohort. The C9orf72 repeat expansion does not appear to be a common cause of FTD and related disorders. This report confirms the notion that C9orf72 repeat expansions underlie a broad spectrum of neurodegenerative phenotypes. Relatively isolated agraphia in two cases with C9orf72 repeat expansions is a strong motivation to provide detailed and sophisticated oral and written language assessments that can be used to more precisely characterize early cognitive deficits in these heterogeneous conditions

    Identification and description of three families with familial Alzheimer disease that segregate variants in the SORL1 gene

    No full text
    Abstract Alzheimer disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. The majority of AD cases are sporadic, while up to 5% are families with an early onset AD (EOAD). Mutations in one of the three genes: amyloid beta precursor protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2) can be disease causing. However, most EOAD families do not carry mutations in any of these three genes, and candidate genes, such as the sortilin-related receptor 1 (SORL1), have been suggested to be potentially causative. To identify AD causative variants, we performed whole-exome sequencing on five individuals from a family with EOAD and a missense variant, p.Arg1303Cys (c.3907C > T) was identified in SORL1 which segregated with disease and was further characterized with immunohistochemistry on two post mortem autopsy cases from the same family. In a targeted re-sequencing effort on independent index patients from 35 EOAD-families, a second SORL1 variant, c.3050-2A > G, was found which segregated with the disease in 3 affected and was absent in one unaffected family member. The c.3050-2A > G variant is located two nucleotides upstream of exon 22 and was shown to cause exon 22 skipping, resulting in a deletion of amino acids Gly1017- Glu1074 of SORL1. Furthermore, a third SORL1 variant, c.5195G > C, recently identified in a Swedish case control cohort included in the European Early-Onset Dementia (EU EOD) consortium study, was detected in two affected siblings in a third family with familial EOAD. The finding of three SORL1-variants that segregate with disease in three separate families with EOAD supports the involvement of SORL1 in AD pathology. The cause of these rare monogenic forms of EOAD has proven difficult to find and the use of exome and genome sequencing may be a successful route to target them
    corecore