14 research outputs found

    Structural and functional studies of C4b-binding protein (C4BP)

    No full text
    The subject of this thesis is complement inhibitor C4b-binding protein (C4BP), on which we have performed both structural and functional studies. Complement is part of the innate immune defence and eliminates microbes, solubilises immune complexes and is involved in the clearance of apoptotic cells. The actions of the complement system must be carefully controlled by proteins such as C4BP to avoid self-damage of the host. C4BP is a polymeric protein composed of seven identical alpha-chains and one beta-chain. In human plasma, C4BP circulates in complex with protein S (PS), a cofactor in the anticoagulant system. The alpha-chains of C4BP bind C4b and thereby inhibit the actions of this activated complement factor in the classical pathway of complement. Our structural studies include determination of binding sites for C4b, C3b and heparin, structural requirements for the polymerisation of C4BP, and the structural stability of C4BP in adverse conditions. Based on the understanding of the polymerisation of C4BP we propose how to use the core of C4BP in the production of multimeric biotechnological tools. There is a need for therapeutic complement inhibitors, and the knowledge of the mechanisms of inhibition and the structural stability of natural complement inhibitors will be helpful in development of such drugs. The functional studies we have performed demonstrate the ability of C4BP to bind C3b and present it for degradation, thereby inhibiting the alternative pathway of complement, enhancement of C4BP activity in the presence of zinc and the role of C4BP in the phagocytosis of apoptotic cells. We found that the C4BP-PS complex inhibits phagocytosis of apoptotic cells by macrophages, suggesting an important physiological role for the complex

    Signatures in in vitro infection of NSC-34 mouse neurons and their cell nucleus with Rickettsia helvetica

    No full text
    Abstract Background Rickettsia helvetica, a spotted fever rickettsia, is transmitted to humans via ticks in Europe, North Africa, and Asia. The central nervous system is a crucial target for rickettsial diseases, which has been reported for 12 of the 31 species, of which R. helvetica is one. This study aimed, in an experimental model, to identify characteristics of R. helvetica infection in a mouse neuronal cell line, NSC-34. Results NSC-34, a fusion cell line of mouse motor spinal cord neurons and neuroblastoma cells, was used as a model. Propagation of R. helvetica in neurons was confirmed. Short actin tails were shown at the polar end of the bacteria, which makes it likely that they can move intracellularly, and even spread between cells. Another protein, Sca4, which with the cell adhesion protein vinculin enables the passage of the cell membrane, was expressed during infection. No significant increase in TNFα levels was seen in the infected neurons, which is of interest because TNFα protects the host cell from infection-induced apoptotic death which is crucial for host cell survival. The bacteria were also shown to invade and grow in the cell nucleus of the neuron. Conclusions The findings suggest that a R. helvetica infection may be harmful to NSC-34 neurons under these in vitro conditions, but the full effects of the infection on the cell need to be studied further, also on human neurons, to also understand the possible significance of this infection in relation to pathogenetic mechanisms

    Structural requirements for the intracellular subunit polymerization of the complement inhibitor C4b-binding protein.

    No full text
    C4b-binding protein (C4BP), an important inhibitor of complement activation, has a unique spider-like shape. It is composed of six to seven identical alpha-chains with or without a single beta-chain, the chains being linked by disulfide bridges in their C-terminal parts. To elucidate the structural requirements for the assembly of the alpha-chains, recombinant C4BP was expressed in HEK 293 cells. The expressed C4BP was found to contain six disulfide-linked alpha-chains. Pulse-chase analysis demonstrated that the recombinant C4BP was rapidly synthesized in the cells and the polymerized C4BP appeared in the medium after 40 min. The alpha-chains were polymerized in the endoplasmic reticulum (ER) already after 5 min chase. The polymerization process was unaffected by blockage of the transport from the ER to the Golgi mediated by brefeldin A or low temperature (10 degrees C). The C-terminal part of the alpha-chain (57 amino acids), containing 2 cysteine residues and an amphiphatic alpha-helix region, was required for the polymerization. We constructed and expressed several mutants of C4BP that lacked the cysteine residues and/or were truncated at various positions in the C-terminal region. Gel filtration analysis of these variants demonstrated the whole alpha-helix region to be required for the formation of stable polymers of C4BP, which were further stabilized by the formation of disulfide bonds

    Identification of Novel Downstream Molecules of Tissue Factor Activation by Comparative Proteomic Analysis

    No full text
    Tissue factor (TF) is both an initiator of blood coagulation and a signaling receptor. Using a proteomic approach, we investigated the role of TF in cell signaling when stimulated by its ligand, activated factor VII (FVIIa). From a 2-D difference gel electrophoresis (DIGE) study we found forty one spots that were differentially regulated over time in FVIIa stimulated cells or in comparison to nonstimulated cells. Mass spectrometry identifies 23 out of these as 13 different proteins. One of them, elongation factor 2 (EF-2), was investigated in greater detail by Western blot, a protein synthesis assay and cell cycle analysis. When tissue factor was stimulated by FVIIa, the phosphorylation of EF-2 increased which inactivates this protein. Analyzing the effect using site inactivated FVIIa (FVIIai), as well as the protease activated receptor 2 (PAR-2) agonist SLIGKV, indicated that the inactivation was not PAR-2 dependent. A panel of tissue factor mutants was analyzed further to try to pinpoint what part of the cytoplasmic domain that is needed for this effect. Performing a protein synthesis assay in two different cell lines we could confirm that protein synthesis decreased upon stimulation by FVIIa. Cell cycle analysis showed that FVIIa also promotes a higher degree of cell proliferation

    The C4b-binding protein-protein S complex inhibits the phagocytosis of apoptotic cells.

    No full text
    The phagocytosis of apoptotic cells is a complex process involving numerous interactions between the target cell and the macrophage. We have examined a role of the major soluble inhibitor of the classic and lectin complement pathways, C4b-binding protein (C4BP), in the clearance of apoptotic cells. The major form of C4BP present in blood is composed of seven alpha-chains and one beta-chain, which binds protein S ( PS). Approximately 70% of all PS in human plasma is trapped in such a complex and is able to localize C4BP to the surface of apoptotic cells due to the high affinity to phosphatidylserine. Free PS has recently been shown to enhance phagocytosis of apoptotic cells by macrophages. We observed a stimulatory effect of free PS on the engulfment of apoptotic cells (BL-41 and Jurkat) by primary human macrophages or THP-1 cells and a decrease of activity in serum depleted of PS in agreement with previous results. However, we also show that the process is strongly inhibited in the presence of the C4BP-PS complex. Addition of the C4BP-PS complex to serum deficient in both molecules abolished the enhancing effect of serum on phagocytosis. The effect of both free PS and the C4BP-PS complex could be inhibited with monoclonal antibody directed against the Gla domain of PS. Although the presence of the C4BP-PS complex on apoptotic cells may lead to decreased phagocytosis, it may still be beneficial to the host, since it could prevent secondary necrosis because it inhibits further complement attack

    CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion

    No full text
    Aims/hypothesis: Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart−/− mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. Methods: CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca2+ oscillation patterns and exocytosis were studied in mouse islets. Results: We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca2+ signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. Conclusions/interpretation: We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes
    corecore