52 research outputs found

    Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordAbandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur- oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi- contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal- transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.International Key Project from National Natural Science Foundation of ChinaProjects of Natural Science Foundation of ChinaPublic welfare project of Chinese Ministry of Environmental Protectionnternational key project of Ministry of Science and Technology of ChinaS2016G2135Centre National de la Recherche ScientifiqueRoyal Society Newton Mobility GrantNational Natural Science Foundation International Joint collaboration China-Swede

    Sulphide oxidation, oxygen diffusion and metal mobility in sulphide-bearing mine tailings in Northern Sweden

    No full text
    Large quantities of sulphide-bearing mining wastes produced from ore processing are deposited throughout the world. Sulphide oxidation in the wastes may release acidic water with high concentrations of metals to the environment. Remediation strategies are usually site specific, since the physical and chemical properties of the wastes vary. Therefore, sulphide oxidation, oxygen diffusion and metal mobility in unoxidised and oxidised, remediated and unremediated wastes have been studied in the present work. The efficiency of different cover systems on unoxidised tailings from Kristineberg, were studied in pilot-scale test cells (5*5*3 m3)under field conditions. Clayey till, sewage sludge, apatite and Trisoplast were used as sealing layers and unspecified till as a protective cover. In one cell tailings were left uncovered. Unoxidised tailings in the test-cells in the initial stage after deposition showed relatively low sulphur release (600- 800 mg/l)in leachate waters, which probably was an effect of high moisture content in the tailings prior to deposition. Near-neutral pH found in the leachates was an effect of neutralisation by carbonate minerals present and lime (Ca(OH)2) added prior to deposition. Similar sulphur concentrations were found also in the uncovered tailings. The sulphide oxidation rate increased with time in the uncovered tailings, and decreased in the covered. The lowest oxygen concentrations were observed below the cover system with sewage sludge, which was the most effective barriar against oxygen in a short-term perspective. The oxygen fluxes through the clayey till and apatite layers were within the same magnitude and varied between 0.5 and 4 mole/year,m2. The Trisoplast layer seemed to have failed as a barrier against oxygen. Tailings studied at field scale at Laver and Kristineberg had oxidised for more than 50 years. The tailings at Kristineberg have high pyrite content (c.25% and 50%) and those at Laver have low grade of pyrrhotite (2-3%). The Laver tailings are unremediated, while at Kristineberg the tailings were remediated in 1996. The transport of metals in the drainage water at Laver decreased during a study period of 8 years. The transport of dissolved sulphur indicated a declining trend of sulphide oxidation rate in the tailings, which was confirmed by oxygen measurements in the tailings and weathering rate estimations. The decline was considered to be natural as a result of the increased distance that oxygen has to travel to reach unoxidised sulphide grains. The major part of the amounts of metals released by sulphide oxidation were secondarily retained in the tailings, and to a small extent in layers cemented by jarosite and Fe-(oxy)hydroxides. Sequential extraction of these layers showed that metals such as Cu and Pb were mostly associated with crystalline Fe-(oxy)hydroxides. Most important retention mechanism was, however, sorption onto minerals surfaces below the oxidation front. The studied Impoundment 1 at Kristineberg was remediated by two different methods; on one part a dry cover consisting of a sealing layer and a protective cover were applied, and the groundwater table was raised and a single dry cover applied on the other part. When the groundwater table was raised in oxidised tailings, secondarily retained metals such as Fe, Mg, Mn, S and Zn were remobilised resulting in increased concentrations in the groundwater. The concentrations declined with time, due to dilution by inflowing uncontaminated water. Decreased concentrations of Fe, Mg, Mn, S and Zn were observed also in the groundwater below the dry cover as the amount of percolating water decreased. The concentrations of trace elements such as Cd, Co, Cr, Cu, Ni and Pb were almost depleted in the groundwater, since these metals were retained within the tailings by mechanisms such as co-precipitation, precipitation and sorption. Analysis of pyrite grains by LA-ICP-SMS showed that pyrite surfaces were important for retention of As and Cu, in particular, but also for Cd and Zn. This study shows that the physico-chemical conditions expressed by pH and redox potential have a large impact on element mobility’s. For example, As was mobilised as a result of remediation, while the concentrations of most metals decreased in the drainage waters.Godkänd; 2006; 20061116 (pafi

    Scheelite weathering and tungsten (W) mobility in historical oxidic-sulfidic skarn tailings at Yxsjöberg, Sweden

    No full text
    More knowledge of the geochemical behavior of tungsten (W) and associated contamination risks is needed. Therefore, weathering of scheelite (CaWO4) and secondary sequestration and transport of W to groundwater in historical skarn tailings and surface water downstream of the tailings were studied. The tailings contained 920 mg/kg W, primarily in scheelite. Mineralogical and geochemical analyses were combined to elucidate the geochemical behavior of W in the tailings, and water samples were taken monthly during 2018 to monitor its mobility. In the tailings, a large peak of W was found at 1.5 m depth. There, 30 wt%. of W was present in easily reducible phases, indicating former scheelite weathering. Currently, W is being released from scheelite to water-soluble phases at 2.5 m depth. The release of WO42− is hypothetically attributed to anion exchange with CO32− released from calcite neutralizing acid produced from pyrrhotite oxidation in the upper tailings and transported downwards to pH conditions &gt; 7. Higher concentrations of dissolved W were found in the groundwater and particulate W in downstream surface water than in reference water, but they were lower than current contamination thresholds. Tungsten showed correlations with hydrous ferric oxides (HFO) in both the tailings and surface water.Validerad;2020;Nivå 2;2020-03-18 (alebob);Artikeln har tidigare förekommit som manuskript i avhandling.</p

    Effect of liming a permanently stratifies pit lake, Rävlidmyran, northern Sweden

    No full text
    Rävlidmyran pit lake situated in Northern Sweden had low pH, and a permanent stratification with anoxic water at depth. To improve the water quality, the pit lake was limed by using Ca(OH)2. Before liming, the lake was stratified with low pH (3.0 - 3.4) and high concentration of dissolved oxygen between 0 and 5 m depth, with a transition zone from 5 to 8 m depth, and a zone with pH 3.2 - 5.5 and very low dissolved oxygen from 8 m depth to the bottom. Metals such as Al, Cu and Pb had highest concentrations in the upper zone whereas the concentrations of most other elements including As, Ca, Cd, Fe, Mg, Mn, S and Zn increased with depth. The stratification remained also after the liming treatment. pH increased to about 8 in the whole water column although only one sixth of the Ca(OH)2 was rapidly dissolved, and the remaining part accumulated in the bottom sludge. Redox decreased, especially in the oxygen poor zone at depth. Concentrations of Fe, Mn, Zn and Mg decreased strongly in the upper oxic water, due to formation of oxyhydroxides. In the anoxic bottom water, the concentrations of these elements gradually increased towards pre-liming levels. Aluminium and Cu were almost completely depleted in the entire water column due to pH increase and precipitation of minerals such as gibbsite. The bottom sludge formed after the liming was dominated by Ca(OH)2, calcite and a group of Fe(II)-Fe(III) oxyhydroxides, so called green rust. Metals removed from the dissolved phase of the water column accumulated in the sludge. Although the bottom sludge will have a buffering effect for some time, the poor water mixing in the pit lake will rapidly result in acid water in the upper zones when liming ceases.Key Words: AMD, pit lake, liming, geochemistry, water column, bottom sludgeGodkänd; 2007; 20071207 (ysko

    Geochemical evaluation of mine water quality in an open-pit site remediated by backfilling and sealing

    No full text
    En geokemisk utvärdering av gruvvattenkvaliteten i ett efterbehandlat dagbrott, Kimheden, genomfördes år 2009. Kimheden är en liten koppargruva som är belägen i Västerbotten, Norra Sverige, som var i produktion under 70-talet för Boliden AB. Den återfylldes av gråberg och förseglades med lerig morän 1996. Ytvatten- och grundvattenprover togs på plats under sommaren 2009. Det har dessutom genomförts regelbunden provtagning av områdets huvudvattendrag av Boliden AB sedan 1983. Resultaten visar att metall koncentrationerna minskade samt att pH-värdet ökade efter genomförd efterbehandling, vilket indikerar en fördelaktig utveckling av vattenkvaliteten.Godkänd; 2010; 20101216 (lucvyl

    Prevention of Sulfide Oxidation in Waste Rock using By-products and Industrial Remnants : a Suitability Study

    No full text
    Prevention and mitigation of acid rock drainage from mining are decisive for limiting environmental impact. Five by-products and industrial remnants (lime kiln dust, blast furnace slag, granulated blast furnace slag, cement kiln dust and fly ash) were investigated for their suitability to prevent acidity and metal(loid)s during leaching from highly sulfidic (50wt%, sulfide) waste rock in small scale laboratory test cells. Variations in pH and electrical conductivity in leachate allowed differentiation between the different materials. Lime kiln dust (5wt%) and fly ash (1 and 2.5wt%) were observed to be the most suitable materials to prevent acidity and metal(loid)s leaching

    Literature review on potential geochemical and geotechnical effects of adopting paste technology under cold climate conditions

    No full text
    The purpose of this literature review is to summarize the recent research regarding geochemical and geotechnical stability of paste tailings, identify knowledge gaps and future research needs. The present study has been conducted by the Division of Geosciences and Environmental Engineering together with the Division of Mining and Geotechnical Engineering at Luleå University of Technology on behalf of Boliden Mineral, LKAB and Outotec.A survey conducted by MEND (Mine Environment Neutral Drainage) in 2006 on the environmental effects related to the use of paste tailings summarizes that only a few studies had been performed about long-term effects on the surface and groundwater quality. Instead, the focus had been on the additives and the strength of the paste. It is still uncertain how the paste technology affects the long-term environmental stability from a geochemical point of view. Concerns regarding the stability of paste with high sulphide content are still relevant. Studies performed indicate that sulphide oxidation occurs within cemented paste as well as on the surface of non-cemented paste and cracks formed on the surfaces could induce oxidation. For cemented paste, metals released by sulphide oxidation might be sequestered due to high pH induced by the alkaline additives, but anion such as Se has been shown to be mobilized. The leachate has been shown to be near-neutral initially, but the neutrality decreases with time and probably metals sequestered in the matrix will also be released. Again, it should be noted that no long term study was performed on leaching of paste, cemented or uncemented. The longest leaching study was performed for one year. Arsenic has been proven to be retained in Ca-arsenates in cemented paste, but the long term stability of these precipitates is relatively unknown. Expanded secondary phases e.g. gypsum and ettringite have been observed to form when there is sulphate in the process or drainage of water. These phases could crack the paste, but, on the other hand, can also fill former cracks when deposited in layers. The effects of the formation of these phases are relatively uncertain in a long-term perspective. Presence of different elements such as ammonium, sulphates and metals in the water has been shown to negatively affect the curing process and therefore water is suggested to be treated before use. The presence of carbon dioxide during the paste formation could also affect the curing process, but could sequester metals in carbonate phases.Geotechnical and rheological properties of paste is well defined and documented. Several case studies have been found in literature providing valuable information about the details of the works being carried out. However, a difficulty has been noted during the investigation of the effects of cold climate conditions when current practice is applied in the colder parts of the world. It is not certain how some specific and vital parameters are going to be affected by cold temperatures. Parameters such as deposition slopes and deposition scheme, strength development of the paste are expected to be responsive to cold climate conditions. There are predictions about which properties are going to be affected in what way, but there is also a need to establish a scientific base for discussion. These have been highlighted as research needs and information gaps at the end of the report.Godkänd; 2013; 20130821 (dendag

    Prevention of sulfide oxidation in waste rock by the addition of lime kiln dust

    No full text
    During the operation of a mine, waste rock is often deposited in heaps and usually left under ambient conditions allowing sulfides to oxidize. To focus on waste rock management for preventing acid rock drainage (ARD) formation rather than ARD treatment could avoid its generation and reduce lime consumption, costs, and sludge treatment. Leachates from 10 L laboratory test cells containing sulfide-rich (&gt; 60% pyrite) waste rock with and without the addition of lime kiln dust (LKD) (5 wt.%) were compared to each other to evaluate the LKD’s ability to maintain near neutral pH and reduce the sulfide oxidation. Leaching of solely waste rock generated an acidic leachate (pH &lt; 1.3) with high concentrations of As (21 mg/L), Cu (20 mg/L), Fe (18 g/L), Mn (45 mg/L), Pb (856 μg/L), Sb (967 μg/L), S (17 g/L), and Zn (23 mg/L). Conversely, the addition of 5 wt.% LKD generated and maintained a near neutral pH along with decreasing of metal and metalloid concentrations by more than 99.9%. Decreased concentrations were most pronounced for As, Cu, Pb, and Zn while S was relatively high (100 mg/L) but decreasing throughout the time of leaching. The results from sequential extraction combined with element release, geochemical calculations, and Raman analysis suggest that S concentrations decreased due to decreasing sulfide oxidation rate, which led to gypsum dissolution. The result from this study shows that a limited amount of LKD, corresponding to 4% of the net neutralizing potential of the waste rock, can prevent the acceleration of sulfide oxidation and subsequent release of sulfate, metals, and metalloids but the quantity and long-term stability of secondary minerals formed needs to be evaluated and understood before this method can be applied at a larger scale.Validerad;2019;Nivå 2;2019-09-24 (johcin)</p
    corecore