9 research outputs found

    Clinical Skills Development in the Virtual Learning Environment: Adapting to a New World

    Get PDF
    The rapid transition to distance learning in response to the unexpected SARS-CoV-2/COVID-19 pandemic led to disruption of clinical skills development, which are typically conducted face-to-face. Consequently, faculty adapted their courses, using a multitude of active learning modalities, to meet student learning objectives in the didactic and experiential settings. Strategies and considerations to implement innovative delivery methods and address potential challenges are elucidated. Furthermore, integration of a layered learning approach may allow for more broad perspectives and allow additional interactions and feedback, which is especially necessary in the virtual environment.https://digitalcommons.chapman.edu/pharmacy_books/1025/thumbnail.jp

    Chemokine Coreceptor Signaling in HIV-1 Infection and Pathogenesis

    Get PDF
    Binding of the HIV-1 envelope to its chemokine coreceptors mediates two major biological events: membrane fusion and signaling transduction. The fusion process has been well studied, yet the role of chemokine coreceptor signaling in viral infection has remained elusive through the past decade. With the recent demonstration of the signaling requirement for HIV latent infection of resting CD4 T cells, the issue of coreceptor signaling needs to be thoroughly revisited. It is likely that virus-mediated signaling events may facilitate infection in various immunologic settings in vivo where cellular conditions need to be primed; in other words, HIV may exploit the chemokine signaling network shared among immune cells to gain access to downstream cellular components, which can then serve as effective tools to break cellular barriers. This virus-hijacked aberrant signaling process may in turn facilitate pathogenesis. In this review, we summarize past and present studies on HIV coreceptor signaling. We also discuss possible roles of coreceptor signaling in facilitating viral infection and pathogenesis

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetĀ® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetĀ® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication

    No full text
    Certain HIV-encoded proteins modify host-cell gene expression in a manner that facilitates viral replication. These activities may contribute to low-level viral replication in nonproliferating cells. Through the use of oligonucleotide microarrays and high-throughput Western blotting we demonstrate that one of these proteins, gp120, induces the expression of cytokines, chemokines, kinases, and transcription factors associated with antigen-specific T cell activation in the absence of cellular proliferation. Examination of transcriptional changes induced by gp120 in freshly isolated peripheral blood mononuclear cells and monocyte-derived-macrophages reveals a broad and complex transcriptional program conducive to productive infection with HIV. Observations include the induction of nuclear factor of activated T cells, components of the RNA polymerase II complex including TFII D, proteins localized to the plasma membrane, including several syntaxins, and members of the Rho protein family, including Cdc 42. These observations provide evidence that envelope-mediated signaling contributes to the productive infection of HIV in suboptimally activated T cells
    corecore