5,590 research outputs found

    On the instability of Reissner-Nordstrom black holes in de Sitter backgrounds

    Full text link
    Recent numerical investigations have uncovered a surprising result: Reissner-Nordstrom-de Sitter black holes are unstable for spacetime dimensions larger than 6. Here we prove the existence of such instability analytically, and we compute the timescale in the near-extremal limit. We find very good agreement with the previous numerical results. Our results may me helpful in shedding some light on the nature of the instability.Comment: Published in Phys.Rev.

    Development of subminiature multi-sensor hot-wire probes

    Get PDF
    Limitations on the spatial resolution of multisensor hot wire probes have precluded accurate measurements of Reynolds stresses very near solid surfaces in wind tunnels and in many practical aerodynamic flows. The fabrication, calibration and qualification testing of very small single horizontal and X-array hot-wire probes which are intended to be used near solid boundaries in turbulent flows where length scales are particularly small, is described. Details of the sensor fabrication procedure are reported, along with information needed to successfully operate the probes. As compared with conventional probes, manufacture of the subminiature probes is more complex, requiring special equipment and careful handling. The subminiature probes tested were more fragile and shorter lived than conventional probes; they obeyed the same calibration laws but with slightly larger experimental uncertainty. In spite of these disadvantages, measurements of mean statistical quantities and spectra demonstrate the ability of the subminiature sensors to provide the measurements in the near wall region of turbulent boundary layers that are more accurate than conventional sized probes

    Intrinsic Anharmonicities In The Bx4 2- Orthorhombic Sublattice

    Get PDF
    We have measured the room-temperature polarized Raman spectra of the internal modes of K2SO4 and K2SeO4 under hydrostatic pressure up to 10 GPa in a backscattering configuration. It was found that phonons involving the motion of selenium atoms have distinctive pseudoanharmonicities that can be traced to isotopic natural abundances. Accordingly, a reinterpretation is given to the origin of the fourth-order anharmonicity (g4 coupling constant) within the quartic potential formalism as representing dynamical isotopic effects in the cluster picture. We found that this analysis may be extended to other molecular systems with either phonon instabilities or order-disorder commensurate- incommensurate phase transitions. © 1986 The American Physical Society.3353379338

    Conformal entropy from horizon states: Solodukhin's method for spherical, toroidal, and hyperbolic black holes in D-dimensional anti-de Sitter spacetimes

    Full text link
    A calculation of the entropy of static, electrically charged, black holes with spherical, toroidal, and hyperbolic compact and oriented horizons, in D spacetime dimensions, is performed. These black holes live in an anti-de Sitter spacetime, i.e., a spacetime with negative cosmological constant. To find the entropy, the approach developed by Solodukhin is followed. The method consists in a redefinition of the variables in the metric, by considering the radial coordinate as a scalar field. Then one performs a 2+(D-2) dimensional reduction, where the (D-2) dimensions are in the angular coordinates, obtaining a 2-dimensional effective scalar field theory. This theory is a conformal theory in an infinitesimally small vicinity of the horizon. The corresponding conformal symmetry will then have conserved charges, associated with its infinitesimal conformal generators, which will generate a classical Poisson algebra of the Virasoro type. Shifting the charges and replacing Poisson brackets by commutators, one recovers the usual form of the Virasoro algebra, obtaining thus the level zero conserved charge eigenvalue L_0, and a nonzero central charge c. The entropy is then obtained via the Cardy formula.Comment: 21 page

    Does a relativistic metric generalization of Newtonian gravity exist in 2+1 dimensions?

    Get PDF
    It is shown that, contrary to previous claims, a scalar tensor theory of Brans-Dicke type provides a relativistic generalization of Newtonian gravity in 2+1 dimensions. The theory is metric and test particles follow the space-time geodesics. The static isotropic solution is studied in vacuum and in regions filled with an incompressible perfect fluid. It is shown that the solutions can be consistently matched at the matter vacuum interface, and that the Newtonian behavior is recovered in the weak field regime.Comment: 6 pages, no figures, Revtex4. Some discussions on the physical nature of the interior solution and on the omega->infinity limit and some references added. Version to appear in Phys. Rev.
    • …
    corecore