Intrinsic anharmonicities in the BX_4^{2-} orthorhombic sublattice

Néstor E. Massa

Département de Physique et Centre de Recherche en Physique du Solide, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

Vólia Lemos

Instituto de Física "Gleb Wataghin," Universidade Estadual de Campinas (UNICAMP), 13100 Campinas, São Paulo, Brazil (Received 28 March 1985)

We have measured the room-temperature polarized Raman spectra of the internal modes of K_2SO_4 and K_2SeO_4 under hydrostatic pressure up to 10 GPa in a backscattering configuration. It was found that phonons involving the motion of selenium atoms have distinctive pseudoanharmonicities that can be traced to isotopic natural abundances. Accordingly, a reinterpretation is given to the origin of the fourth-order anharmonicity (g_4 coupling constant) within the quartic potential formalism as representing dynamical isotopic effects in the cluster picture. We found that this analysis may be extended to other molecular systems with either phonon instabilities or order-disorder commensurate-incommensurate phase transitions.

I. INTRODUCTION

Isostructural A_2BX_4 compounds showing the paraelectric orthorhombic Pnam (D_{2h}^{16}) space group with four molecules per unit cell have attracted interest because the wide variety of structural changes that they present, of which, the modulated phase is distinctive. Of these the most studied is K₂SeO₄. Its second-order phase transition, from the paraelectric into the incommensurate stage, is characterized by the softening of the Σ_2, Σ_3 extended branch with $\omega_j(\bar{q})$ tending to zero at $\bar{q} \simeq (1/3,0,0)$.¹ Below T_I ($\simeq 129$ K), the wave vector $\overline{q}_{\delta} = [1 - \delta(T)]\overline{a}^*/3$ is characteristic of an unidimensional modulation with δ going discontinuously to zero at the lock-in transition $(T_c = 93 \text{ K})$. The Brillouin zone then folds along \overline{a} three times and the system becomes weakly ferroelectric. This sequence of structural changes is shared with compounds like Rb₂ZnCl₄, Rb₂ZnBr₄, and K₂ZnCl₄, among others.

In contrast, K_2SO_4 whose β paraelectric phase is a prototype for the whole A_2BX_4 family, has the orthorhombic (paraelectric)—orthorhombic (ferroelectric) sequence in common with K_2SeO_4 but without the intermediate incommensurate phase.²

There have been numerous attempts to understand the paraelectric lattice instability in K_2SeO_4 and in particular, the origin of the incommensurate phase. The proposed mechanisms range from the coupling of translation motion of the potassium ions with the rotation motion of SeO_4^{2-} ,¹ in a rigid ion approximation; to a local fourth-order potential addition to the shell model.³ This last, Fig. 1, represents a one-dimensional diatomic chain with polarizable anionic clusters and rigid cations. The origin of nonlinearity is attributed to the quartic polarizability of the chalcogenide anions and related cluster. It leads analytically to a lock-in transition at $2\pi/3$. More recently, Massa *et al.*⁴ presented experimental evidence for mode softening precursors in the electron-phonon interactions.

All these approaches involve in a fundamental way the role of the BX_4^{2-} sublattice, and, since in many cases there are inconsistencies in the current literature, we decided to compare with Raman scattering, the behavior of SeO_4^{2-} and that of SO_4^{2-} at room temperature under high hydrostatic pressure.

Our aim is to elucidate from the experimental point of view what may differentiate the inner dynamics of these two sublattices, and then compare our results with an appropriate theoretical model to aid the understanding of the appearance of a modulate phase in these relatively simpler systems.

The study of K_2SeO_4 and K_2SO_4 only implies an isoelectronic chalcogenide replacement in the formula unit. Hence, they present an ideal situation for this kind of comparative work. The reported x-rays studies at room temperature do not reveal any distinctive anomaly in these two compounds.^{5,6} Accordingly, we describe below the polarized Raman spectra of the internal modes of K_2SeO_4 and K_2SO_4 under high hydrostatic pressure up to 10 GPa at room temperature in a backscattering configuration.

FIG. 1. Shell-cluster model; M_1, M_2 effective ionic masses of BX_4^{2-} anion and A_2 cation. f, f' first- and second-nearest-neighbor coupling constants. g_2, g_4 harmonic and quartic shell-core coupling constants (from Ref. 3).

II. EXPERIMENT

Single crystals of K_2SO_4 and K_2SeO_4 were grown by slow evaporation of aqueous solutions at room temperature. The pressure is applied by an opposed anvils type cell.⁷ One anvil is the cylindrical 10 mm diameter and 10 mm thick, optically flat sapphire window. An oriented small single crystal and a ruby chip, for pressure calibration purposes, were put in the 300 μ m hole of a Cu-Be gasket. The pressure transmitting fluid was a mixture of methanol-ethanol in a 4:1 ratio. Frequency positions were established against the calibrated (5145 Å) plasma lines. Pressure points were verified before and after each run since we observed some window deterioration around 5–6 GPa. Our estimated error is about 0.1 GPa.

Pressure phase diagrams have been studied by Pistorius and Rapoport⁸ and Press *et al.*⁹ No structural phase transition was expected or found at room temperature with increasing pressure up to 10 GPa.

III. RESULTS

Our results are displayed in Figs. 2(a),2(b) and 3(a),3(b). The points represent experimental data while solid lines are least-square fits to the data with polynomial expressions of the type

$$\omega = \omega_0 + \sum_n A_n p^n \,. \tag{1}$$

Atmospheric pressure peak positions are summarized as zero-order fitting parameters (ω_0) in Table I. They are in agreement with previously reported spectra.^{10,11}

The $XO_4^{2-}(v_2, v_4, v_1, v_3)$ vibrational modes are in welldefined spectral regions as for the free molecule. Figures 2(a) and 2(b) show the behavior of the symmetric (v_2) and antisymmetric (v_4) bending modes for K_2SO_4 and K_2SeO_4 under pressure. It should be noted that the weakest $v_4(B_{1g})$ mode was not plotted since it tended to merge with the background from the backscattering configura-

FIG. 2. Pressure dependence of the bending modes of (a) K_2SO_4 and (b) K_2SeO_4 : \bullet , A_g ; \blacksquare , B_{1g} ; \blacktriangle , B_{2g} ; \blacklozenge , B_{3g} . The polynomial fit is shown as solid lines.

tion. Nevertheless, we were able to verify that it has the same behavior as the other v_4 . The one-to-one correlation between the two compounds for every phonon is evident and the frequency-pressure relation is generally linear.

The results for the stretching region (v_1, v_3) are shown in Figs. 3(a) and 3(b). $B_{1g}(v_1, v_3)$ modes that are almost degenerate with their A_g counterparts were not considered because leakages of the latter modes made their position uncertain. Even though the overall frequency versus pressure dependence has the same slope for both compounds there is a definite departure from a linear behavior in the v_3 phonons of K₂SeO₄. These [Fig. 3(b)] do not show a break in the slope. Their behavior with pressure is continuous, implying the possible absence of a random librational motion and pointing toward intrinsic anharmonicities within the SeO₄²⁻ sublattice.

The fitted linear coefficients of Eq. (1), (A_1) , were used to calculate mode Grüneisen parameters, γ_j , for all observed modes (j) using the equation

$$\gamma_j = -\frac{d \ln \omega_j}{d \ln V} = \frac{A_1(j)B}{\omega_0(j)} , \qquad (2)$$

where B is the bulk modulus. We have used an empirical rule¹² to calculate the bulk modulus of K_2SO_4 since to the best of our knowledge the elastic constants have not been determined. It relates the bulk moduli and the molecular densities of the two materials by

$$\frac{B(2)}{B(1)} = \left| \frac{\rho(2)}{\rho(1)} \right|^4,$$
(3)

with B(1)=26.7 GPa as previously calculated for K₂SeO₄ (Ref. 13) and densities (ρ) obtained from lattice constants.^{5,6} Thus, $B(2)\simeq 15.4$ GPa for K₂SO₄. Every inter-

FIG. 3. Pressure dependence of the stretching modes of K_2SO_4 and K_2SeO_4 : \bullet , A_g ; \blacksquare , B_{1g} ; \blacktriangle , B_{2g} ; \blacklozenge , B_{3g} . The polynomial fit is shown as full and dashed lines.

TABLE I. Peak position of the internal vibrational modes of K₂SeO₄ and K₂SO₄ at atmospheric pressure and coefficients of a polynomial fit to the expression $\omega = \omega_0 + \sum_n A_n p^n$. A weak unresolved peak has been observed in some of our A_g spectra at the frequency indicated by the question mark. It does have a direct correlation with the internal mode assignments.

			K ₂ SeO ₄	K ₂ SO ₄			
Mode	ω^{a} (cm ⁻¹)	ω_0 (cm ⁻¹)	$\begin{array}{c} A_1 \\ (\mathrm{cm}^{-1}\mathrm{GPa}^{-1}) \end{array}$	$A_2 (\mathrm{cm}^{-1}\mathrm{GPa}^{-2})$	ω^{b} (cm ⁻¹)	ω_0 (cm ⁻¹)	$\begin{array}{c} A_1 \\ (\mathbf{cm}^{-1} \mathbf{GPa}^{-1}) \end{array}$
Ag	334	332.8	3.1		447	445.5	2.7
	414	412.3	0.89		618	616.9	1.2
(<i>aa</i>)	430	430.5	2.4		628	626.7	2.0
(bb)	841	841.1	6.5	-0.14	983	984.7	4.6
(<i>cc</i>)	865	862.2	7.8	-0.15	1192	1093.8	5.7
	901	900.2	3.7		1144	1145.7	3.3
B ₁ ,	342	340.5	3.0		45 3	451.6	2.8
(<i>ba</i>)	420	418.3	1.4		620	618.7	1.6
	437				633		
	841				983		
	874	876.7	6.2		1111	1110.7	5.8
	900				1144		
					1165(?)		
B_{2g}	344	342.6	2.8		456	455.0	3.0
(<i>ac</i>)	421	420.4	1.3		622	621.6	1.5
	875	874.5	7.0	-0.10	1109	1106.3	6.2
B _{3g}	346	344.8	3.2		457	455.3	3.1
(<i>bc</i>)	417	417.6	1.5		623	620.3	1.3
	871	871.6	7.5	-0.14	1104	1104.5	5.7

^aReference 11.

^bReference 10.

nal mode of each vibrational group has a Grüneisen parameter of the same order of magnitude. Table II shows the mean values for each vibrational group of K_2 SeO₄ and K_4 SO₄. The only exception to this trend is observed, as in the case of K_2 SeO₄,¹³ for the v_3 mode (A_g , 1146 cm⁻¹, atmospheric pressure) whose Grüneisen parameter $\gamma'(v_3)=0.0145$, is distinctive within its group. These mode Grüneisen parameters, as expected for ionic solids, are not correlated with frequency for either compound. Anharmonic contributions in SeO₄²⁻ are reflected here in that a polynomial fit needs significant second-order terms, as shown in Table I, i.e., linear mode Grüneisen parameters would only be an approximation.

IV. DISCUSSION

A clue to the origin of the difference between SO_4^{2-} and SeO_4^{2-} internal vibrational modes is that the antisymmetric v_3 stretching eigenmodes imply the motion

TABLE II. Mean values of the Grüneisen parameters of each internal vibrational group of K_2SO_4 and K_2SeO_4 .

	$\overline{\gamma}(v_2)$	$\overline{\gamma}(v_4)$	$\gamma(v_1)$	$\overline{\gamma}(v_3)$
K ₂ SO ₄	0.099	0.038	0.072	0.082
K ₂ SeO ₄ ^a	0.24	0.096	0.21	0.22

^aReference 13.

of the tetrahedral center atom.¹⁴ While the former anion contains an isotopic composition with only small mass differences (32 S, 95%, 33 S, 0.76%, 34 S, 4.22%; 36 S, 0.014%),¹⁵ the latter one has to add the presence of a wide variety of Se isotopes (⁷⁴Se, 0.37%; ⁷⁶Se, 9.02%; ⁷⁷Se, 7.58%; ⁷⁸Se, 23.52%; ⁸⁰Se, 49.82%; ⁸²Se, 9.19%).¹⁵ [The idea of growing crystals of K_2 SeO₄ (⁸⁰Se) was abandoned due to the excessive cost that it implies. However, samples of K_2ZnCl_4 (³⁵Cl) are in active consideration.] The oxygen contribution is present for both anions. We note that K_2 SeO₄ near degenerate phonons of the B_{1g}, B_{2g}, B_{3g} species at about 875 cm⁻¹ are precisely those that are likely to be affected by these atoms. Having four molecules per unit cell, the likelihood of four tetrahedral replicas is small so we also understand the frequency versus pressure quadratic dependence of the v_1 (841 cm⁻¹, atmospheric pressure) symmetric mode as a result of a many-body dynamical interaction. This is to some extent manifested on the oxygen isotopic side band of this phonon, shown in Fig. 4, where we found structureless line shapes at any temperature in contrast with those reported for K_2SO_4 by Montero et al.¹⁰. Hence, we have pointed out the origin of intrinsic anharmonic, or perhaps, now more properly, pseudoanharmonic, effects in SeO_4^{2-} sublattice and consequently, we are driven to consider a model in which extra anharmonicities play a distinctive role.

As it was pointed out above, a one-dimensional model, Fig. 1, has been put forward that includes a local fourthorder anisotropy potential,³ i.e., a second-order oscillator,

FIG. 4. Temperature dependence of the oxygen isotopic side band of the v_1, A_g mode of K_2 SeO₄.

in considering the electron interaction of a shell-core cluster picture for the SeO_4^{2-} sublattice. The harmonic version is well known for its success in describing the lattice dynamics of innumerable compounds.¹⁶ The additional introduction of a g_4 quartic coupling constant is determinant for ferroelectric phase transitions as well as for nonlinear excitations in several systems considered displacive. However, this treatment does not discriminate between K_2SeO_4 and K_2SO_4 . If one chooses to consider that the atom polarizability in the shell picture is totally taken into account by harmonic terms, as it is quite likely since S and Se are isoelectronics, one obtains the same commensurate-phase-transition sequence for both compounds. Lattice instability in this approximation is attributed to a negative (electron) shell-(ion) core coupling constant g_2 .

In the nonlinear version,¹⁷ the additional higher-order term, i.e., the nonlinear interaction between electrons and ions resulting in the g_4 coupling constant, is thought to give origin to the double-well picture (see Ref. 17, Sec. II B, α, β) in a displacive environment only.

We interpret the g_4 coupling constant as a pseudoanharmonic macroscopic counterpart of a many-body problem that results when the natural isotopic composition is explicitly considered in the lattice dynamics. They may be thought of as intrinsic impurities of the BX_4^{2-} sublattice. With this additional term, the perfect translation symmetry in the classical sense is regained. g_2 ,

within this interpretation, would still play the role assigned in the harmonic approximation for hybridization in the cluster.

This interpretation for the nonlinear force gives a more intrinsic character to each member of the A_2BX_4 orthorhombic family. We know that some of its components such as Rb₂ZnCl₄ or K₄ZnCl₄ share the same orthorhombic (paraelectric)-incommensurate-orthorhombic (ferroelectric) phases with K₂SeO₄. However, they have a different dynamical behavior at T_I . No soft phonon has been found in the paraelectric phase of either Rb_2ZnCl_4 (Ref. 18) or K_2ZnCl_4 (Ref. 19). We interpret this as a consequence of the dynamical disorder introduced in the normal phase by rubidium (85Rb, 72.15%; ⁸⁷Rb, 27.85%) (Ref. 15) and chlorine (³⁵Cl, 75.53%; ³⁷Cl, 24.47%) (Ref. 15) atoms. Hwang²⁰ has already pointed this out in the lattice dynamics of molecular compounds and earlier, Wu and Sutherland²¹ estimated the relative percentage of various isotopic compositions for CCl₄ to be 31.6% for 35 Cl₄; 42.2% for 35 Cl₃ 37 Cl; 21.1% for 35 Cl₂; 3³⁷Cl₂; 4.7% for 35 Cl 37 Cl₃; and 0.4% for 37 Cl₄. This means that in the paraelectric phase of A_2 ZnCl₄(A:K,Rb) systems the chlorines, due to their positions in the tetrahedras, not only introduce extra pseudoanharmonicities, as Se in K_2 SeO₄, but also lower the effective symmetry. A statistically weighted percentage of D_{2h}^{16} (Pnam) forbidden modes are naturally allowed at some sites of the ideal paraelectric phase. Then the order-disorder picture at T_I , rather than the displacive one, is a natural consequence. This is also evidenced in hydrostatic pressure phase diagrams for the commensurate-incommensurate transition. Rb_2ZnCl_4 , K_2ZnCl_4 , and Rb_2ZnBr_4 have positive-pressure coefficients,²² while a negative one is found for K_2SeO_4 ,⁹ in agreement with Samara criterion.²³

On the other hand it also suggests that the cluster model would be successful to describe the phonon instability in other compounds such as $SrTiO_3$,²⁴ where titanium has a well differentiated isotopic family (⁴⁶Ti, 6.88%; ⁴⁷Ti, 7.32%; ⁴⁸Ti, 73.99%; ⁴⁹Ti, 5.46%; ⁵⁰Ti, 5.25%),¹⁵ and that in blue bronzes, $X_{0.33}$ MOO₃ (X = K,Rb), (⁹²Mo, 15.86%; ⁹⁴Mo, 9.12%; ⁹⁶Mo, 16.50%; ⁹⁷Mo, 9.45%; ⁹⁸Mo, 23.75%; ¹⁰⁰Mo, 9.62%),¹⁵ where the commensurate-incommensurate phase transition involves a distortion of the MoO₆ octahedra.²⁵ We observe that replacement of molybdenum by isoelectronic tungsten²⁶ produces drastic changes pointing toward a more important role of mass differences than the one regularly assigned.

V. CONCLUSION

We have measured the internal modes spectra of K_2SeO_4 and K_2SO_4 up to 10 GPa. The reported behavior shows explicitly that v_3 phonons involving the motion of the selenium atoms have distinctive pseudoanharmonicities that can be traced to isotopic natural abundances. We found that the analysis may be extended to other systems with either phonon instabilities or phase transformations. On the other hand, we reinterpret the g_4 coupling con-

stant within the quartic potential formalism³ as given containing dynamical isotopic effects thus reinforcing the idea of a deformable sublattice as the proper description of the lattice dynamics in molecular compounds.

We wish to emphasize that in spite that nonlinear potentials lead to consider, within the context of the above discussion, the isotopic presence as a sufficient condition for a commensurate-incommensurate phase transition, we still like to think as only a necessary ingredient in the delicate balance of forces present in systems that develop that kind of structural transformations. This is also consistent with the quoted experimental results.^{1,18,19}

ACKNOWLEDGMENTS

The authors wish to thank Serge Jandl and André-Marie Tremblay for a critical reading of the manuscript. Financial support by the Fundação de Amparo à Pesquisa do Estado de São Paulo and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brazil) to carry out this work is gratefully acknowledged. This work began during the stay of one of us (N.E.M.) at Instituto de Física "Gleb Wataghin," Universidade Estadual de Campinas (UNICAMP), 13100 Campinas, São Paulo, Brazil.

- ¹M. Iizumi, J. D. Axe, G. Shirane, and K. Shimaoka, Phys. Rev. B 15, 4932 (1977).
- ²K. Gesi, Y. Tominaga, and H. Urabe, Ferroelectric Lett. 44, 71 (1982).
- ³H. Bilz, H. Büttner, A. Bussman-Holder, W. Kress, and U. Schröder, Phys. Rev. Lett. **48**, 264 (1982).
- ⁴N. E. Massa, P. Echegut, and F. Gervais, Ferroelectrics 53, 281 (1984); N. E. Massa, V. Lemos, P. Echegut, and F. Gervais, Bull. Am. Phys. Soc. 29, 225 (1984).
- ⁵A. Kalman, J. S. Stephens, and D. W. J. Cruickshank, Acta Crystallogr. Sec. B 26, 145 (1970).
- ⁶J. A. McGinnety, Acta Crystallogr. Sec. B 28, 2845 (1972).
- ⁷R. S. Hawke, K. Svassen, and W. B. Holzapfel, Rev. Sci. Instrum. 45, 1598 (1974).
- ⁸C. W. F. J. Pistorius and E. Rapoport, J. Phys. Chem. Solids 30, 195 (1969).
- ⁹W. Press, C. F. Majkzak, J. D. Axe, J. R. Hardy, N. E. Massa, and F. G. Ullman, Phys. Rev. B 22, 332 (1980).
- ¹⁰M. Debeau, Rev. Phys. Appliquée, 7, 9 (1972); S. Montero, R. Schomölz, and S. Haussühl, J. Raman Spectrosc. 2, 101 (1974).
- ¹¹P. Echegut, F. Gervais, and N. E. Massa, Phys. Rev. B 31, 581 (1985).
- ¹²B. A. Weinstein and R. Zallen, in *Topics in Applied Physics*, edited by M. Cardona and G. Güntherodt (Springer-Verlag, New York, 1984), Vol. 54.
- ¹³V. Lemos, R. S. Katiyar, and N. E. Massa, Proceedings of the

IXth International Conference on Raman Spectroscopy, Tokyo, 1984 (Chemical Society of Japan, Tokyo, 1984).

- ¹⁴G. Herzberg, Infrared and Raman Spectra (Van Nostrand, New York, 1966).
- ¹⁵C. M. Ledeter, J. M. Hollander, and I. Perlman, *Table of Isotopes*, 6th ed. (Wiley, New York, 1964).
- ¹⁶G. Venkataraman, L. A. Feldkamp, and U. C. Sahni, Dynamics of Perfect Crystals (MIT, Cambridge, Mass., 1975).
- ¹⁷H. Büttner and H. Bilz, in *Recent Developments in Condensed Matter Physics*, edited by J. T. Devreese (Plenum, New York, 1981), p. 49.
- ¹⁸C. F. Majkrzak, J. D. Axe, and H. Grimm (private communication).
- ¹⁹K. Gesi and M. Iizumi, J. Phys. Soc. Jpn. 53, 4271 (1984).
- ²⁰D. M. Hwang, Phys. Rev. B 9, 2717 (1974).
- ²¹C. K. Wu and B. G. G. M. Sutherland, J. Chem. Phys. 6, 114 (1938).
- ²²K. Gesi, J. Phys. Soc. Jpn. 53, 62 (1984).
- ²³G. A. Samara, Proceedings of the 2nd International Meeting on Ferroelectricity, Kyoto, 1969 [J. Phys. Soc. Jpn. Suppl. 28, 399 (1970)].
- ²⁴R. Migoni, H. Bilz, and D. Bäverle, Phys. Rev. Lett. **37**, 1155 (1976).
- ²⁵J. P. Pouget, S. Kazoshima, C. Schlenker, and J. Marcus, J. Phys. (Paris) 44, L113 (1983).
- ²⁶M. Sato, B. H. Grier, H. Fujishita, S. Hoshino, and A. R. Moodenbaugh, J. Phys. C 16, 5217 (1983).