160 research outputs found

    Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus plexippus) via Range Expansion of Asclepias Host Plants

    Get PDF
    Climate change can profoundly alter species\u27 distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration

    Unifying Ecosystem Responses to Disturbance into a Single Statistical Framework

    Get PDF
    Natural ecosystems are currently experiencing unprecedented rates of anthropogenic disturbance. Given the potential ramifications of more frequent disturbances, it is imperative that we accurately quantify ecosystem responses to severe disturbance. Specifically, ecologists and managers need estimates of resistance and recovery from disturbance that are free of observation error, not biased by temporal stochasticity and that standardize disturbance magnitude among many disparate ecosystems relative to normal interannual variability. Here, I propose a statistical framework that estimates all four components of ecosystem responses to disturbance (resistance, recovery, elasticity and return time), while resolving all of the issues described above. Coupling autoregressive time series with exogenous predictors (ARX) models with impulse response functions (IRFs) allows researchers to statistically subject all ecosystems to similar levels of disturbance, estimate lag effects and obtain standardized estimates of resistance to and recovery from disturbance that are free from observation error and stochastic processes inherent in raw data

    Phenology Dictates the Impact of Climate Change on Geographic Distributions of Six co-Occurring North American Grasshoppers

    Get PDF
    Throughout the last century, climate change has altered the geographic distributions of many species. Insects, in particular, vary in their ability to track changing climates, and it is likely that phenology is an important determinant of how well insects can either expand or shift their geographic distributions in response to climate change. Grasshoppers are an ideal group to test the hypothesis that phenology correlates with range expansion, given that co-occurring confamilial, and even congeneric, species can differ in phenology. Here, I tested the hypothesis that early- and late-season species should possess different range expansion potentials, as estimated by habitat suitability from ecological niche models. I used nine different modeling techniques to estimate habitat suitability of six grasshopper species of varying phenology under two climate scenarios for the year 2050. My results suggest that, of the six species examined here, early-season species were more sensitive to climate change than late-season species. The three early-season species examined here might shift northward during the spring, while the modeled geographic distributions of the three late-season species were generally constant under climate change, likely because they were pre-adapted to hot and dry conditions. Phenology might therefore be a good predictor of how insect distributions might change in the future, but this hypothesis remains to be tested at a broader scale

    Drought and Small-Bodied Herbivores Modify Nutrient Cycling in The Semi-Arid Shortgrass Steppe

    Get PDF
    Climate change will increase the frequency of droughts over the next century, with severe consequences for ecosystem function in semi-arid grasslands. The shortgrass steppe (SGS) experiences some of the largest interannual variation in precipitation among terrestrial biomes and exhibits extremely high sensitivity to drought. Yet despite decades of research describing the consequences of drought for ecosystem function in the SGS, we currently have little information regarding the impact of drought on bioavailability of important nutrients other than nitrogen, the contribution of herbivores to bioavailable concentrations of these nutrients, and whether drought alters herbivore-derived nutrient cycling. To quantify the impacts of long-term drought and small-bodied herbivores on nutrient cycling and aboveground net primary production (ANPP), we factorially manipulated rainfall and herbivore presence in the SGS of northern Colorado. Specifically, we measured the impacts of drought and herbivores on bioavailability of ten important nutrients: aluminum, calcium, iron, potassium, magnesium, manganese, nitrate, phosphorus, sulfur, and zinc. We then correlated these nutrients with grass production to determine whether reduced plant growth under drought conditions causes a belowground buildup of nutrients. Drought reduced ANPP as expected, and also altered concentrations of many nutrients apart from N, which clustered in their drought response. In contrast, small-bodied herbivores did not affect ANPP or soil N. However, they did contribute to the bioavailable soil concentrations of two important nutrients: PO4-P and S. Importantly, drought generally did not modify the contribution of herbivores to nutrient cycling, suggesting that herbivores might be a critical component of biogeochemical cycling regardless of precipitation in semi-arid grasslands

    Blue Grama Grass Genotype Affects Palatability and Preference by Semi-arid Steppe Grasshoppers

    Get PDF
    The semi-arid shortgrass steppe ecosystem of North America is dominated by blue grama grass (Bouteloua gracilis), a species with substantial intraspecific variability, ecological significance, and economic value. Yet no studies have addressed within species differences in blue grama palatability or insect herbivore preference with respect to plant traits. We performed an experimental study to test the palatability and preference of two blue grama genotypes, wild type versus cultivar, by grasshopper herbivores in the Gomphocerinae subfamily. We found strong evidence that cultivar blue grama was more palatable than wild type and that grasshoppers preferred cultivar plants. Although we could not detect differences in silica content between the two types, we found that cultivar plants were larger, had lower water content, and surprisingly, had reduced nutrient value (greater C:N). These results suggest that intraspecific variation in blue grama size and water content could influence feeding choices by this group of grasshoppers. Conservation managers will have to consider such variation when considering how remnant and restored prairies might be affected by these arthropod herbivores

    Cascading effects of a highly specialized beech-aphid–fungus interaction on forest regeneration

    Get PDF
    Specialist herbivores are thought to often enhance or maintain plant diversity within ecosystems, because they prevent their host species from becoming competitively dominant. In contrast, specialist herbivores are not generally expected to have negative impacts on non-hosts. However, we describe a cascade of indirect interactions whereby a specialist sooty mold (Scorias spongiosa) colonizes the honeydew from a specialist beech aphid (Grylloprociphilus imbricator), ultimately decreasing the survival of seedlings beneath American beech trees (Fagus grandifolia). A common garden experiment indicated that this mortality resulted from moldy honeydew impairing leaf function rather than from chemical or microbial changes to the soil. In addition, aphids consistently and repeatedly colonized the same large beech trees, suggesting that seedling-depauperate islands may form beneath these trees. Thus this highly specialized three-way beech-aphid–fungus interaction has the potential to negatively impact local forest regeneration via a cascade of indirect effects

    Effects of Low-Level Artificial Light at Night on Kentucky Bluegrass and Introduced Herbivore

    Get PDF
    Increasing evidence suggests that artificial light at night (ALAN) can negatively impact organisms. However, most studies examine the impacts of ALAN on a single species or under high levels of artificial light that are infrequent or unrealistic in urban environments. We currently have little information on how low levels of artificial light emanating from urban skyglow affect plants and their interactions with herbivores. We examined how low levels of ALAN affect grass and insects, including growth rate, photosynthesis, and stomatal conductance in grass, and foraging behavior and survival in crickets. We compared growth and leaf-level gas exchange of Kentucky Bluegrass (Poa pratensis) under low-levels of ALAN (0.3 lux) and starlight conditions (night light at 0.001 lux). Furthermore, each light treatment was divided into treatments with and without house crickets (Acheta domesticus). Without crickets present, bluegrass grown under artificial light at night for three weeks grew taller than plants grown under natural night light levels. Once crickets were introduced at the end of week three, grass height decreased resulting in no measurable effects of light treatment. There were no measurable differences in grass physiology among treatments. Our results indicate that low levels of light resulting from skyglow affect plant growth initially. However, with herbivory, ALAN effects on grass may be inconsequential. Gaining an understanding of how ALAN affects plant-insect interactions is critical to predicting ecological and evolutionary consequences of anthropogenic disturbance

    Herbivores Alleviate the Negative Effects of Extreme Drought on Plant Community by Enhancing Dominant Species

    Get PDF
    Aims Both extreme drought and insect herbivores can suppress plant growth in grassland communities. However, most studies have examined extreme drought and insects in isolation, and there is reason to believe that insects might alter the ability of grasslands to withstand drought. Unfortunately, few studies have tested the interactive effects of extreme drought and insect herbivores in grassland communities. Methods Here, we tested the drought–herbivore interactions using a manipulative experiment that factorially crossed extreme drought with the exclusion of insect herbivores in a temperate semiarid grassland in Inner Mongolia. Important Findings Our results demonstrated that both extreme drought and insect herbivores separately decreased total plant cover. When combined, insect herbivores reduced the impact of drought on total cover by increasing the relative abundance of drought-resistant dominant species. Our results highlight that the negative effect of extreme drought on total plant cover could be alleviated by maintaining robust insect herbivore communities

    Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem

    Get PDF
    On coral reefs, fishes can facilitate coral growth via nutrient excretion; however, as coral abundance declines, these nutrients may help facilitate increases in macroalgae. By combining surveys of reef communities with bioenergetics modeling, we showed that fish excretion supplied 25 times more nitrogen to forereefs in the Florida Keys, USA, than all other biotic and abiotic sources combined. One apparent result was a positive relationship between fish excretion and macroalgal cover on these reefs. Herbivore biomass also showed a negative relationship with macroalgal cover, suggesting strong interactions of top-down and bottom-up forcing. Nutrient supply by fishes also showed a negative correlation with juvenile coral density, likely mediated by competition between macroalgae and corals, suggesting that fish excretion may hinder coral recovery following large-scale coral loss. Thus, the impact of nutrient supply by fishes may be context-dependent and reinforce either coral-dominant or coral-depauperate reef communities depending on initial community states

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Komatsu, Kimberly J. Smithsonian Environmental Research Center, Edgewater. United States.Avolio, Meghan L. Johns Hopkins University. Department of Earth and Planetary Sciences. Baltimore, United States.Lemoine, Nathan P. Marquette University. Department of Biological Sciences. Milwaukee, United States.Chaneton, Enrique José. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Chaneton, Enrique José. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Tognetti, Pedro Maximiliano. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Tognetti, Pedro Maximiliano. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Yahdjian, María Laura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Yahdjian, María Laura. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Isbell, Forest. University of Minnesota. Department of Ecology, Evolution and Behavior. Saint Paul, United States.Grman, Emily. Eastern Michigan University. Department of Biology. Ypsilanti, United States.17867–17873Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of CDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term ( minor to 10 y). In contrast, long-term (major or equal to 10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously
    • …
    corecore