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Abstract 
Natural ecosystems are currently experiencing unprecedented rates of anthropogenic disturbance. Given the 
potential ramifications of more frequent disturbances, it is imperative that we accurately quantify ecosystem 
responses to severe disturbance. Specifically, ecologists and managers need estimates of resistance and 
recovery from disturbance that are free of observation error, not biased by temporal stochasticity and that 
standardize disturbance magnitude among many disparate ecosystems relative to normal interannual variability. 
Here, I propose a statistical framework that estimates all four components of ecosystem responses to 
disturbance (resistance, recovery, elasticity and return time), while resolving all of the issues described above. 
Coupling autoregressive time series with exogenous predictors (ARX) models with impulse response functions 
(IRFs) allows researchers to statistically subject all ecosystems to similar levels of disturbance, estimate lag 
effects and obtain standardized estimates of resistance to and recovery from disturbance that are free from 
observation error and stochastic processes inherent in raw data. 

https://doi.org/10.1111/oik.07752
http://epublications.marquette.edu/


Introduction 
Natural ecosystems are currently experiencing unprecedented rates of disturbance due to human activity. Such 
disturbances immediately impact ecosystem function and can also often impair ecosystem function long after 
the disturbance itself has abated (Smith 2011). More frequent and severe droughts, for example, cause long-
term shifts in plant community composition, widespread tree mortality and catastrophic declines in primary 
production (Ciais et al. 2005, Anderegg et al. 2015, Knapp et al. 2015a). Heat waves often co-occur with drought 
(Perkins et al. 2012), exacerbating soil water loss in terrestrial ecosystems and causing extensive mortality of 
foundational, habitat-forming species in marine systems (Ciais et al. 2005, Le Nohaïc et al. 2017, Smale et 
al. 2019). Other pulse disturbances, such as hurricanes or abnormal frost events, can also initiate rapid and 
lasting changes in ecosystem function (Lodge and McDowell 1991, Lirman et al. 2011). Hence, mitigating the 
consequences of disturbance with preventative or restorative actions, or forecasting how ecosystems will 
respond to future global change, are important goals in ecological research. However, achieving these goals first 
requires that we improve our ability to accurately quantify ecosystem change following disturbance, predict 
trajectories of recovery and identify the abiotic and biotic constraints that dictate ecosystem responses to 
disturbance (Nimmo et al. 2015). 

Ecosystem change following disturbance consists of four quantifiable components (Hodgson et al. 2015), 
hereafter referred to collectively as the ecosystem response to disturbance. First resistance (a.k.a. sensitivity) to 
disturbance describes the degree to which an ecosystem is instantaneously impacted by disturbance. Recovery 
from disturbance refers to the ability of an ecosystem to return to a stable state immediately following 
disturbance. Elasticity and return time refer to the rate and duration of time, respectively, required for an 
ecosystem to return to stability. The related concept of lag effects more broadly describes whether an altered 
ecosystem state persists after the disturbance has been removed (Sala et al. 2012); recovery, elasticity and 
return time are all quantifiable aspects of a lag effect. Thus, lag effects exist when an ecosystem does not 
recovery fully following disturbance and exhibits a non-zero return time. Although these four components have 
already been extensively studied in various ecosystems and with regard to different types of disturbance, they 
remain difficult to quantify in a standardized and accurate manner that enables syntheses and comparisons 
among ecosystems. 

The most significant obstacles to synthesizing information are the inconsistent terminology and diverse methods 
that ecologists use to measure ecosystem responses. The terms resistance and sensitivity have been used 
interchangeably and possess at least five mathematical formulations in the drought literature alone (Table 1). 
Second, comparing estimates of resistance among sites or years is difficult even when using a single metric due 
to analytical flaws. Consider the example of estimating the instantaneous impact of extreme drought on 
aboveground net primary production (ANPP). Calculating resistance as the ratio of ANPP during drought to ANPP 
of the previous year (Lloret et al. 2011, Gazol et al. 2017, 2018, Stuart-Haëntjens et al. 2018) incorporates both 
temporal stochasticity and observation errors that can lead to inaccurate results. Moreover, using this metric, 
the context of drought resistance varies from site-to-site and year-to-year, rending impossible any inter- or even 
intra-site comparisons of ecosystem resistance to drought. Attempts to describe ecosystem recovery are even 
more inconsistent in both terminology and methods (Table 1), and suffer from many of the same analytical 
flaws. Here, I propose a statistical framework based on econometric techniques that simultaneously estimates 
all four components of ecosystem responses to disturbance using accepted, standardized language while 
resolving statistical problems with previous methods. Such a method is sorely needed, as most studies of 
ecosystem responses to disturbance analyze time series data but fail to use the appropriate autoregressive time 
series approaches (Kannenberg et al. 2020). 



Table 1. Definitions and mathematical equations used to calculate ecosystem resistance, resilience, recovery and legacy effects following an extreme 
stress event 

Method Name Equation Units Citation 
Reduction during 
stress 

    

 1 Sensitivity xt − xt−1
pptt − pptt−1

 Change in primary production per mm change in 
rainfall 

Wilcox et al. 2017 

 2 Sensitivity ∆x
∆ppt

 Slope of the primary production – precipitation 
relationship 

Huxman et al. 2004b, Knapp et al. 
2015b 

 3 Sensitivity 100 × �
xt − x�

x�
� Percent decline from long-term mean Griffin-Nolan et al. 2018 

 4 Resistance xt
xt−1

 Proportion decline from pre-drought year Lloret et al. 2011, Gazol et al. 2017, 
2018 

 5 Resistance ln �
xt

xt−1
� Log proportion decline from pre-drought year Stuart-Haëntjens et al. 2018 

Return following 
stress 

    

 6 Recovery xt+1
xt

 Proportion increase in post-drought year Lloret et al. 2011, Gazol et al. 2017, 
2018 

 7 Resilience xt+1
xt−1

 Proportion decrease in post-drought year from pre-
drought 

Lloret et al. 2011 

 8 Resilience ln �
xt+1
xt−1

� Log proportion decrease in post-drought year from 
pre-drought 

Stuart-Haëntjens et al. 2018 

 9 Legacy 
effects 

100

× �
xt1 − x�

xt+1
� 

Percent decrease in post-drought year from long-term 
mean 

Griffin-Nolan et al. 2018 

 10 Legacy 
effects 

xt+1 + xt+1 Observed – predicted for post-drought year Sala et al. 2012, Anderegg et al. 
2015 

 



Problems with prior methods 
The methods outlined in Table 1 consist of either ratio-based or regression-based procedures. Both 
methodologies possess statistical and logical issues that should discourage their future application. 

Ratio-based methods 
The first problem with ratio-based methods is that, by working with raw observations, estimates of resistance 
and recovery include observation error. Sampling errors, spatial heterogeneity or any number of other processes 
can cause significant variation in the data and potentially yield inaccurate estimates of resistance and recovery. 
To illustrate the extent to which sampling error induces inaccuracies, I conducted a simple simulation 
experiment to estimate the resistance and recovery of ANPP from drought. For each of the 10 000 simulations, I 
assumed a true average ANPP of x = 500 g m−2 for ten time steps (i.e. years), similar to levels observed at the 
Konza Prairie Biological Station (Griffin-Nolan et al. 2018). I then imposed drought during the second time step 
using a resistance value randomly chosen from a Uniform(0.5,1) distribution, where x2 = x1 × resistance. I 
allowed ANPP to recover at the next time step with a recovery value randomly chosen from a Uniform(1,2) 
distribution, such that x3 = x2 × recovery. Next, I imposed a sampling error of ± 40 g m−2 to the true values, similar 
in magnitude to sampling uncertainty at KPBS (Griffin-Nolan et al. 2018), to create a new variable y of observed 
ANPP values: y ~ N(x, 402). From the observed data y, I calculated resistance as y2/y1 and recovery as y3/y2 (Table 
1). I repeated this simulation for a low productivity site, setting mean ANPP to 100 g m−2 and sampling error to ± 
15 g m−2, representative of the semi-arid shortgrass steppe in northern Colorado (Griffin-Nolan et al. 2018). 

As expected, estimates of resistance and recovery using observed data (i.e. with noise) were highly variable. 
Although the observed values for resistance and recovery were both centered around the true value, any single 
observation of resistance and recovery could deviate significantly from the true value (Fig. 1). For example, 
observed resistance varied from approximately 0.3–0.75 for a true value of 0.5 at the highly productive site 
(Fig. 1A). At the low productivity site, errors were magnified; observed resistance varied from approximately 
0.2–0.9 for a true value of 0.5 (Fig. 1A). The same patterns held for recovery, wherein sampling error resulted in 
large deviations from the true value and errors were larger for the less productive site (Fig. 1B). Large errors at 
the less productive site result from difficulties in using ratios; small deviations from the true value cause a larger 
proportional difference when the denominator (e.g. y1 for resistance, y2 for recovery) is small. These simulations 
also assumed that the true value of ecosystem function during normal years was constant, but temporal 
variability in ecosystem properties would compound inaccuracies arising from sample errors. Ecosystem 
resistance to, or recovery from, drought might therefore be overestimated if the pre-drought year is dry 
(thereby reducing the decline in ANPP caused by drought and seemingly increasing resistance) or the post-
drought year is abnormally wet (thereby increasing the magnitude of recovery), further magnifying the lack of 
precision. 

 
Figure 1 Relationship between (A) true resistance and observed resistance and (B) true recovery and observed 
recovery using simulated data. I simulated a time series of 10 observations for a given value of ANPP (100 or 500 
g m−2). For each simulation, I chose a random resistance value from a Uniform(0.5,1) distribution and a random 
recovery value from a Uniform(1,2) distribution. I set x2 as the drought year, with a true ANPP equal to ANPP × 

https://onlinelibrary.wiley.com/cms/asset/eca66096-0494-4f2d-8a07-839c2a76c450/oik13116-fig-0001-m.jpg


resistance, and I set x3 as the recovery year with a true ANPP equal to x2 × recovery. I then introduced a sampling 
error of 10 or 40 g m−2 for the low and high-productivity simulations, respectively. I calculated the observed 
resistance and recovery values from the sampled data. Points show the median observed value, dark inner bars 
show the 50% quantiles, and light outer bars show the 95% quantiles. 
 

Finally, it is difficult to place estimates of ecosystem responses to disturbance from ratio-based methods into a 
proper context that enables cross-site comparisons. Continuing the drought example, the degree of disturbance 
induced by a given rainfall reduction varies with regional climate conditions. In other words, a 200 mm reduction 
in annual rainfall imposes a much stronger meterological drought in the arid shortgrass steppe than it does in 
mesic tallgrass prairies (Knapp et al. 2015b). However, most ratio-based methods do not incorporate such 
context-specificity (but see Wilcox et al. 2017). The lack of context-specificity inhibits accurate cross-site or 
cross-time comparisons of ecosystem responses to disturbance. 

Regression-based methods 
Perhaps the most popular method for identifying lag effects of disturbance is to calculate the predicted 
ecosystem state using regression and then estimating the degree of recovery as the residual error of the 
observed recovery from the predicted recovery. For example, to estimate the recovery of ANPP following 
drought, one would first regress ANPP against annual precipitation. The regression equation provides the 
predicted ANPP in the year following drought based on rainfall, and the residual of the post-drought year 
(observed-predicted) constitutes the lag effect. The shortgrass steppe of Colorado experienced an extreme 
drought in 2012 (Fig. 2A – red dot). Based on the ANPP–precipitation relationship, we can estimate the 
predicted value of ANPP in 2013 (Fig. 2B). The lag effect is then the observed ANPP in 2013 (Fig. 2A–B – green 
dot) minus the predicted value in 2013 (Fig. 2B). 

 
Figure 2 (A) Time series of ANPP at the Central Plains Experimental Range in the shortgrass steppe of Colorado. 
The orange dotted line shows the predicted ANPP based on the ANPP–precipitation relationship. Red dot shows 
the drought of 2012, green dot shows the year following the extreme drought. (B) The ANPP–precipitation 
relationship for the Central Plains Experimental Range. The orange envelope is the 95% CI of the mean, the blue 
envelope is the 95% CI of a prediction point. (C) Using the mean 95% CI (orange line) to statistically test for 
legacy effects results in high false positive rates as sample size increases and uncertainty about the mean 
decreases, while using the observation 95% CI (blue line) avoids this complication. Lines were generated by 
simulating 10 000 precipitation time series, then using a simulating primary production–precipitation 
relationship to estimate primary production in the absence of legacy effects. Type I error rates are the 
proportion of observations in a simulated time series that would be considered to possess significant legacy 
effects, despite being simulated without legacy effects. 

https://onlinelibrary.wiley.com/cms/asset/f5672504-bab7-4d2e-878e-91c9ce7f491a/oik13116-fig-0002-m.jpg


 

However, identifying lag effects and quantifying recovery using this method suffers from logical and statistical 
issues. Statistically, observations will almost never fall exactly along the regression line; by definition of the sum-
to-zero property of residuals, half the points will be above and half will be below the line. Thus, every 
observation will exhibit a lag effect to some degree. To circumvent this problem, some researchers consider only 
‘significant' lag effects, wherein the observation falls outside of the 95% CI of the regression line (Griffin-Nolan 
et al. 2018, Fig. 2B). Yet this method is akin to testing whether a single observation is exactly equal to the mean 
value, and says more about certainty of the mean value than the presence of any lag effect. The recovery point 
might fall outside the 95% CI due to observation error, and the likelihood that a point falls outside the 95% CI of 
the mean increases rapidly as sample size increases because the width of the 95% CI decreases proportionally to 
the inverse square-root of sample size (Fig. 2C). For long time series, over 80% of observations would be 
considered significant when compared to the 95% CI of the mean, even when data were generated without 
autoregressive lags (Fig. 2C). Comparing the presence of lag effects among sites might therefore simply be 
reporting differences in time series length. One solution is to use the observation CI instead of the mean CI. The 
mean CI is the most commonly plotted envelope and denotes the 95% CI of the regression line, equivalent to the 
95% CI of the mean at any given point. The observation CI is the 95% of the individual observations at any given 
point and provides the envelope that is likely to contain a single observation. The mean and observation CIs are 
analogous to the standard error of the mean and standard deviation of the data, respectively. Using the 
observation CI opposed to the mean CI alleviates potential type I errors because the width of the observation CI 
depends only on residual error, not sample size (Fig. 2C). 

Logically, quantifying recovery as the deviation from the predicted line assumes that the scatter surrounding the 
regression is caused entirely by lag effects. Is this true for all points, or only the single point in which the 
ecologist is interested? If lag effects are the only cause of scatter, incorporating autoregressive parameters into 
regression models should perfectly fit the data. Autoregressive parameters do improve fit, but they do not 
model data perfectly and often do not improve prediction accuracy for a single observation (Oesterheld et 
al. 2001). Alternatively, if lag effects apply only during the year following disturbance, do sources of variability 
present in other years not occur in the recovery year? If true, then lag effects should rarely switch signs, yet 
ANPP in the shortgrass steppe shows a small negative lag effect following the 2002 drought and a strong positive 
lag effect following the 2012 drought (thus impairing intra-site comparisons of lag effects, Fig. 2A). Either lag 
effects switch from positive to negative on a regular basis, or unaccounted sources of variation are influencing 
estimates of lag effects and recovery from raw data. In reality, many factors likely contribute to an imperfect 
primary production–precipitation relationship in all years, including the within-year distribution of rainfall event 
size and timing (Heisler-White et al. 2008), observation error, stochasticity in community composition and 
potential lag effects. Ecologists need a method that accurately separates the signal from the noise when 
assessing ecosystem responses to disturbance. 

A statistical framework for ecosystem responses to disturbance 
Here, I demonstrate that autoregressive models with exogenous predictors (ARX) and impulse response 
functions (IRFs) allow researchers to rigorously identify the presence of lag effects, subject all ecosystems to a 
similar level of disturbance, and obtain estimates of resistance, recovery, elasticity and return time that are free 
from stochastic processes inherent in raw data. ARX models and IRFs are particularly attractive because they are 
not only powerful, but simple to implement using any statistical software. ARX models are simply an 
autoregression model with an extra parameter and have already been used, if not identified by name, by 
ecologists examining lag effects of drought (Sala et al. 2012) or as autoregressive population models that include 
interspecific effects (Hansen et al. 1999). IRFs themselves require nothing more than a few basic calculations 



based on parameters from a fitted ARX model (Table 2). Thus, the IRF technique can be implemented by any 
ecologist using freely available software. 

Table 2. Analytical solutions for the simple x* = [α, 0, 0, 0, …, 0] presented here and depicted graphically in Fig. 3. 
IRF is the equation needed to graph the curve, or calculate the ecosystem state at any given time. Proofs are 
given in the Supporting information, as well as solutions for ARX(2) models. Note that these solutions assume 
that y0 is the initial time step when x0* = α (not y1, see x-axis of Fig. 3) 

Model IRF Resistance Recovery Elasticity Return time 
ARX(0) y*t = βx*t βα n/a n/a n/a 
ARX(1) y*t = φ1tβα βα φ1βα log(φ1) log(0.05)/log(φ1) 

 

Impulse response functions 
In econometrics, impulse response functions are simple calculations following time series analyses that describe 
the trajectory of dynamic systems following stress. They are particularly useful in systems that are costly or 
impossible to manipulate experimentally, such as financial markets. Indeed, economists have widely 
implemented IRFs to understand the resistance and recovery of financial markets to instantaneous ‘shocks' 
(Creal and Wu 2017, Gambetti and Musso 2017). For example, Senbet (2016) used IRFs to visualize the 
consequences of higher federal interest rates on unemployment, consumption and other indicators of economic 
health. IRFs can also be used to understand how disturbances of different frequencies or press disturbances 
impact system dynamics. In medical studies, IRFs describe how the human body responds to elevated or 
depressed hormone activity (Schultz et al. 2015, Chang et al. 2017). Earth system modelers use IRFs to 
understand how global temperature or CO2 concentrations respond to various disturbances, such as changes in 
oceanographic processes or vehicular emissions (Thompson and Randerson 1999, Joos et al. 2013, Millar et 
al. 2017, Zeng et al. 2017). 

However, IRFs are currently only defined for a few autoregressive models that generally are not structured to 
test hypotheses about exogenous disturbances. In econometrics, IRFs exist only for univariate autoregressive 
(AR) models and multivariate vector autoregressive (VAR) models (Lutkepohl and Kratzig 2004, Bisgaard and 
Kulahci 2011, Box et al. 2015). AR models would allow ecologists to asses, for example, how systems recover 
from a shock to primary production, but there would be no link to an exogenous driver of production like 
precipitation. VARs include more than one process, but the processes are treated as a multivariate problem 
(Lutkepohl and Kratzig 2004, Bisgaard and Kulahci 2011). For example, ANPP would be driven by lag effects of 
ANPP, current precipitation and lag effects of precipitation. However, precipitation would also be driven be lag 
effects of precipitation, current ANPP and lagged ANPP. Such bidirectional pathways do not make sense for most 
disturbance processes operating at small scales (e.g. coral cover and ocean temperatures). ARX models, on the 
other hand, include an independent exogenous prediction, but IRFs for ARX models have never been defined 
nor, to my knowledge, applied to disturbance problems in any field. 

Identifying ARX–IRFs requires fitting ARX(p) models with time series data to first identify whether lag effects are 
present. ARX(p) models modify autoregressive AR models of order p by including one or more exogenous 
predictions: 

𝑦𝑦𝑡𝑡 = β𝑥𝑥𝑡𝑡 +φ1𝑦𝑦𝑡𝑡−1 + φ2𝑦𝑦𝑡𝑡−2 + ⋯+ φ𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜀𝜀t 

This model states that ecosystem state at time t (yt) depends on contemporary exogenous values (xt, e.g. annual 
precipitation, sea-surface temperature anomaly, etc.), previous ecosystem states up to p time steps in the past 
(yt–p, i.e. lag effects), and error from both unmeasured processes and sampling issues (εt). The appropriate 
order p can be chosen via information theoretic methods (e.g. AIC, BIC) or via χ2 likelihood ratio tests comparing 



successively lower orders (e.g. ARX(2) versus ARX(1), ARX(1) versus ARX(0), etc.), with p-values corrected for 
multiple comparisons. The lowest order model, ARX(0), is simply a linear regression of ecosystem state against 
the exogenous variable with no intercept if the response data have been standardized prior to regression (the 
intercept is the mean, and standardization of the response makes the mean equal to 0). Both the exogenous 
predictor x and ecosystem state y should be standardized to N(0,1), especially if the objective is to compare 
resistance and recovery from disturbance among different sites or ecosystems. 

Once the appropriate ARX(p) model has been identified, the next step is to derive the IRF. IRFs use the fitted 
ARX(p) parameters to model the trajectory of ecosystem state through time following either a single or repeated 
disturbance. In other words, IRFs use the fitted model to predict ecosystem state in whatever time series of the 
exogenous predictor the researcher chooses. For disturbance ecology, we are often interested in how a 
disturbance affects ecosystems immediately, and how ecosystems recover from disturbance. This could be 
expressed by a new exogenous time series that has a disturbance in the first step, and allows the exogenous 
predictor to recover to the mean value for all subsequent time steps (as is common with IRFs for other models, 
(Lutkepohl and Kratzig 2004, Bisgaard and Kulahci 2011, Box et al. 2015)). Such a time step could be expressed 
as: 

𝑥𝑥∗ = [𝛼𝛼, 0,0,0, … ,0] 

where α denotes the disturbance intensity at the initial time point. It is critically important that the exogenous 
predictor x be standardized prior to model fitting, such that α is the stress unit in standard deviations (for 
example, if the predictor is rainfall, then α = −2 is a 2 standard deviation reduction in rainfall) and the mean is 
equal to 0. In this way, ecologists can statistically subject disparate ecosystems to the same level of relative 
disturbance (e.g. a 2σ decline in precipitation) to estimate resistance using the same x* series for each 
ecosystem and calculating the resulting IRF. 

IRFs are essentially functions, or curves, that describe how the system changes through time for a given 
sequence of disturbances. For the single, initial disturbance x* used here, IRFs contain all the information 
needed to quantify resistance, recovery, elasticity and return time (Fig. 3). Following the definitions of (Hodgson 
et al. 2015), resistance measures the instantaneous impact of disturbance when x* = α. Recovery is the extent to 
which ecosystem state remains suppressed (or elevated) once the exogenous predictor returns to average 
conditions (x* = 0). Elasticity is the rate of return to average conditions, and return time is the amount of time 
required to achieve average conditions once the exogenous predictor returns to normal. For the single pulse x* 
presented here, the IRF has simple analytical solutions for ARX(0) and ARX(1) models (Table 2). More 
complicated x* functions, such as multiple pulses, or higher order ARX(p > 1) models, can be solved 
computationally (Supporting information). The use of IRFs and x* provides three benefits: First, observation 
error is removed via the use of a statistical model. Second, temporal stochasticity is eliminated via the use of x*, 
wherein the exogenous predictor can stabilize at average values (or take any form the researcher desires). Third, 
by presenting both the disturbance and ecosystem response in units of standard deviations relative to normal 
conditions, disturbance magnitudes can be identical across ecosystems, and each of the four responses is 
directly comparable, facilitating cross-system comparisons. 



 
Figure 3 Graphical depiction of an IRF. In this IRF, the ecosystem is subject to an initial shock in the exogenous 
predictor with magnitude α. The system then returns to its average conditions for the rest of the time series. 
Resistance is measured by the decline in ecosystem state during the shock, with more negative values implying 
less resistance. Recovery is the extent to which an ecosystem remains altered post-disturbance, with more 
negative values implying less recovery. Elasticity is the rate at which the system recovers (i.e. slope, Δy/Δx), and 
return time is the amount of time it takes for a system to return to nominal levels. Note that this example 
implies a harmful disturbance. However, the sign of all values and the curve could flip for positive disturbances, 
such as a pulse of nitrogen enrichment on plant production. 
 

Behavior of ARX models and IRFs 
In comparison to the regression-based method of assessing significant lag effects (Fig. 2), ARX models have a 
very low probability of incorrectly identifying a lag effect when none are present. This can be illustrated with a 
simulation experiment. I estimated the parameters (means and covariances) for the ANPP–precipitation 
relationship of the shortgrass steppe in Colorado using linear regression. Then, I randomly drew intercept and 
slope parameters from a multivariate normal distribution of the parameter variance–covariance matrix. Using 
the simulated parameters, I calculated the time series of ANPP based solely on the precipitation pattern (no lag 
effects) and added noise to each estimate based on the residual error from the original regression. I then 
standardized both precipitation and ANPP prior to fitting three models: ARX(0), ARX(1) and ARX(2). The best 
model was chosen based on minimum BIC. This procedure was repeated 5000 times at various time series 
lengths. The type I error for lag effects was taken as the proportion of simulations in which ARX(1) or ARX(2) 
models were chosen to be the best model, thereby misidentifying lag effects. The type I error rate was high 
(approximately 0.25) for short time series, but quickly dropped to negligible levels for long time series (Fig. 4A). 
Even the high type I error rate for short time series was approximately half the type I error rate for the 95% CI 
approach (Fig. 2C), indicating that using information criteria to select ARX models provides a marked improved 
in accuracy. 

https://onlinelibrary.wiley.com/cms/asset/4494f3dd-b7c6-41e7-8cbb-dd4d612c90d7/oik13116-fig-0003-m.jpg


 
Figure 4 (A) Type I error rate for identifying lag effects using information criteria to choose the appropriate 
autoregressive order for ARX(p) models. The error rate was calculated as the proportion of simulations in which 
information theory incorrectly identified autoregressive structure to data simulated with no autoregressive 
structure. (B) Resistance to a 2σ drought using simulated ANPP data. A known resistance value was used to 
generate simulated ANPP data, which were then subject to IRF analysis to estimate resistance as βα. The orange 
line shows the 1:1 relationship, points show the medians, dark areas show the 50% quantile, and light areas 
show the 95% quantile. (C) Recovery from a 2σ drought using simulated ANPP data. A known recovery value was 
used to generate simulated ANPP data, which were then subject to IRF analysis to estimate recovery as φβα. The 
orange line shows the 1:1 relationship, points show the medians, dark areas show the 50% quantile, and light 
areas show the 95% quantile. (D) Comparison of resistance estimates based on the traditional ratio-based 
method applied to raw simulated data, or the noise-free fitted values based on an ARX(1) fit to simulated data. 
The green line shows the 1:1 relationship, points show the medians, dark areas show the 50% quantile, and light 
areas show the 95% quantile. 
 

To judge the accuracy of IRFs in estimating resistance and recovery, I conducted a second simulation 
experiment. For each of 10 000 simulations, I set α = −2 to estimate resistance and recovery from a 2σ drought. I 
then drew a value of resistance from a Uniform(−2,0) distribution, and calculated the corresponding 
precipitation coefficient as β = Resistance/α. I also drew the autoregressive parameter φ1 from a Uniform(0,1) 
distribution and calculated Recovery = Resistance × φ1. I standardized the shortgrass steppe precipitation record, 
and simulated standardized ANPP data from an ARX(1) model based on the simulated β and φ1 parameters. I 
back-converted standardized ANPP to the original scale assuming a mean of 100 g m−2 and a standard deviation 
of 15 g m−2. I added noise to the data using an error rate of 15 g m−2. I then re-standardized the noisy ANPP data 
and fit an ARX(1) model to the simulated data. From the ARX(1) model, I calculated the observed resistance and 
recovery based on IRFs for a 2σ drought (α = −2). To further evaluate how ARX models improve estimates of 
resistance and recovery, for each simulation I also calculated resistance to the 2012 drought using the ratio-
based method on the raw, unstandardized (noise-present) data. 

ARX models and IRFs substantially improved the accuracy and precision of ecosystem responses to disturbance. 
Resistance to a 2σ drought was estimated accurately, the median points fall along the 1:1 line (Fig. 4B). 
Estimates of recovery were less accurate, and tended to be overestimated although the mismatch was slight 
(Fig. 4C). The degree of mismatch depends on the relative variation in the response and exogenous predictor; if 
the exogenous predictor is highly variable relative to the response, estimates of φ1 and therefore recovery will 
be inaccurate (Supporting information). Both resistance and recovery were estimated imprecisely (Fig. 4B–C), 
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but this is to be expected when estimating resistance to and recovery from an unknown disturbance. Estimates 
based on a known disturbance, such as the drought of 2012, were highly accurate and precise, especially 
compared to the common ratio-based method. As above, the ratio-based method based on raw data (including 
observation errors) were accurate but imprecise: a true resistance of 0.7 yielded estimates from below 0.4 to 
above 1.1 (Fig. 4D). In contrast, estimates of resistance to the 2012 drought based on noise-free values 
predicted by an ARX(1) model were highly precise; a true resistance of 0.7 yielded estimates of between 0.6 and 
0.8 (Fig. 4D), a 2.5-fold increase in precision. 

Case studies 
The following section demonstrates the utility of ARX models and IRFs to different ecological questions. It is 
important to note that these case studies are intended as demonstrations only and do not represent thorough 
analyses of the actual phenomena in question. Thus, some data pre-treatment (i.e. gap-filling) presented here 
must be carefully considered in any actual model-fitting exercise. Further, in some examples, I make simplifying 
assumptions (i.e. lions prey only on wildebeest) in order to demonstrate the utility of IRFs. As with any statistical 
method, treatment of the data put into the model and careful consideration of the ecological process in 
question are critically important. Further, some example data are better suited to other methods, such as 
population models, but are used here as they illustrate the concept. 

Crab larvae and sea surface temperature of the North Sea 
Populations might, in some cases, exhibit lag effects by means of ‘reproductive inertia'. For example, consider a 
population that has a large recruitment year due to favorable environmental conditions, such as warmer 
temperatures. If conditions return to nominal, the next year should still see elevated recruitment due to the 
higher-than-normal abundances of adults from the previous year. Such ‘inertia' would manifest as lag effects, 
and stronger lag effects yield longer residual effects. However, the stochastic nature of both environments and 
populations makes understanding how long the effects of a single disturbance persist difficult. IRFs can 
illuminate just how long such effects persist by removing temporal stochasticity in the exogenous predictor. 

As an illustration, I extracted data from a 47-year time series (1958–2005) of sea surface temperatures (SST) and 
decapod larval abundances in the North Sea compiled by Continuous Plankton Recorder Survey (Kirby et 
al. 2008) (Fig. 5A). Prior to analyses, I standardized and detrended both SST and larval abundances. Then, I fit the 
following three models: 

 
Figure 5 (A) Time series of standardized decapod larvae abundance and sea surface temperatures of the North 
Sea. (B) Impulse response function for decapod larvae following a 2σ increase in sea surface temperature in the 
first time point. Sea surface temperatures returned to average for the remaining time points. 
 

ARX (0) DLA𝑡𝑡 = βSTT𝑡𝑡
ARX (1) DLA𝑡𝑡 = βSTT𝑡𝑡 +φ1DLA𝑡𝑡−1
ARX (2) DLA𝑡𝑡 = βSTT𝑡𝑡 +φ1DLA𝑡𝑡−1 + φ2DLA𝑡𝑡−2
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where DLA is decapod larval abundance and SST is sea-surface temperatures. I chose the best model using BIC. 

Decapod larval abundances were best described by an ARX(1) model (Table 3). Decapod larval abundances 
increased strongly with increasing SST (β = 0.42 ± 0.13, p = 0.001). In addition, there was a strong, positive lag 
effect (φ1 = 0.74 ± 0.01, p < 0.001). This ARX(1) model allowed me to assess how decapod larval abundance 
responds to a disturbance of anomalously warm SST. In particular, I calculated the IRF for decapod larval 
abundance to a 2σ increase in SST in order to estimate the ecosystem responses to disturbance. Such effects are 
difficult to determine using raw time series due to stochastic fluctuations in SST that might mask autoregressive 
patterns. By using IRFs, I was able to simulate every year at average temperatures following a warm year. 
 
Table 3. Bayesian information criteria (BIC) for three ARX(p) models fit to decapod larval abundances and SST 
time series. Bold denotes the best model, chosen by ΔBIC < 2 

Model BIC ΔBIC 
ARX(0) 132.5 32.8 
ARX(1) 99.9 0.0 
ARX(2) 101.4 1.7 

 

Decapod larval abundances were not resistant to disturbance; a 2σ increase in SST yielded a large, 0.8σ increase 
in decapod larval abundances (Fig. 5B). However, strong autocorrelation (φ1 = 0.74) indicated lag effects of 
decapod larval abundances. The lag effect resulted in low recovery, low elasticity and long return times. In the 
year following the warm disturbance, larval abundances recovered to 0.6σ above what would be expected based 
on temperature alone (Fig. 5B). The low elasticity suggested a low rate of recovery and produced a long return 
time, decapod abundances required almost 10 years to stabilize at pre-disturbance levels (Fig. 5B). Such 
autocorrelation likely results from population inertia, where an individual pulse of recruitment returns higher 
than average population sizes that diminish through time. 

Wildebeest and lions of the Serengeti 
Predator populations often exhibit lag effects in both prey and predator abundance. That is, predator 
abundances are sometimes determined by prey abundance in the prior year(s), which affects breeding success, 
fecundity and juvenile survival. Common examples include coyotes and lynx preying on snowshoe hares 
(O'Donoghue et al. 1997) and wolves and moose on Isle Royale National Park in the northern United States 
(McLaren and Peterson 1994). In other cases, predator populations respond instantaneously (i.e. in the same 
year) to changes in prey abundance (Samhouri et al. 2017). Lions and wildebeest of the Serengeti are an 
example of a predator–prey system that changes synchronously (Samhouri et al. 2017). As a result, lion 
population growth rates are sensitive to changes in wildebeest abundance in the same year. For example, 
wildebeest populations crashed in the mid-20th century due to an outbreak of rinderpest (Sinclair 1973), and 
lions populations subsequently declined precipitously due to a lack of wildebeest and other prey animals, such 
as buffalo. Herbivore populations increased quickly after the disease disappeared, followed by a marked 
increase in lion populations (Sinclair 1973). However, lions have low fecundity rates and require several years to 
reach sexual maturity. Populations might therefore be slow to increase despite higher food availability simply 
due to low initial population sizes (i.e. lag effects). In such cases, IRFs can be used to answer the question, ‘How 
long does it take for a predator population to recover after a severe reduction in prey abundance?' 

To demonstrate, I extracted a 33-year time series on wildebeest and lion populations from (Samhouri et 
al. 2017) (Fig. 6A). Since ARX models require contiguous time series, I interpolated missing years using the 
average of the two nearest years. Prior to analysis, both time series were detrended by extracting residuals from 
linear regressions against year, and residuals were then standardized to N(0,1). I fit three models: 



 
Figure 6 (A) Time series of standardized wildebeest and lion population sizes. (B) Impulse response function for 
lions following a 2σ decline in wildebeest abundances in the first time point. Wildebeest abundances returned to 
average for the remaining time points. 
 

ARX (0) 𝐿𝐿𝑡𝑡 = β𝑊𝑊𝑡𝑡
ARX (1) 𝐿𝐿𝑡𝑡 = β𝑊𝑊𝑡𝑡 + φ1𝐿𝐿𝑡𝑡−1
ARX (2) 𝐿𝐿𝑡𝑡 = β𝑊𝑊𝑡𝑡 + φ1𝐿𝐿𝑡𝑡−1 + φ2𝐿𝐿𝑡𝑡−2

 

where L is lion abundance and W is wildebeest abundance. Note that these models are identical to 
autoregressive models of population abundance that include interspecific effects (Hansen et al. 1999), such that 
ARX models can be used to determine how populations respond to changes in prey, competitor or predator 
abundances. I chose the best model using BIC. 

The best model describing lion abundance was an ARX(2) model that included current-year wildebeest 
abundance (p = 0.001), previous year lion abundance (p < 0.001) and two-year previous lion abundance 
(p = 0.001) (Table 4). With the model identified, I quantified how an extreme disturbance in wildebeest 
populations affects lion populations. Specifically, I calculated the lion IRF to an instantaneous 2σ reduction in 
wildebeest populations, followed by a stable increase to mean wildebeest population size for the remainder of 
the IRF. The IRF was calculated recursively (Supporting information). Since ARX(2) models do not have easily 
identified solutions for recovery time or elasticity due to oscillations (Supporting information), I chose recovery 
time as the point when the IRF stabilized around the equilibrium and elasticity as the rate at which lion 
populations first rebounded to average levels (Fig. 6B). 

Table 4. Bayesian information criteria (BIC) for three ARX(p) models fit to lion and wildebeest time series. Bold 
denotes the best model, chosen by ΔBIC < 2 

Model BIC ΔBIC 
ARX(0) 88.9 15.7 
ARX(1) 78.4 5.2 
ARX(2) 73.2 0.0 

 

Lion populations were highly sensitive (i.e. not resistant) to reductions in wildebeest populations, declining by 
1.1σ during the 2σ reduction in wildebeest (Fig. 6B). In the following year, strong lag effects prevented recovery 
and lion populations remained suppressed below 1σ (Fig. 6B). However, lion populations increased rapidly in 
subsequent years (elasticity = 0.4σ year−1). Populations oscillated for several years, a consequence of the second 
autoregressive parameter and a common pattern in discrete-time predator–prey cycles. Recovery time was 14 
years, at which point lion populations stabilized at average size (Fig. 6B). Thus, this example demonstrates that 
lion populations respond rapidly to a decline in wildebeest numbers, can remain suppressed for up to three 
years following a disease outbreak, and will fluctuate for nearly a decade before stabilizing. 
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Resistance and recovery of grasslands from extreme drought 
Ecologists commonly use long-term time series to assess how grasslands vary in drought resistance and recovery 
across global or continental climate gradients (Sala et al. 2012, Knapp et al. 2015a). However, previous efforts 
have been hindered by the difficulties in standardizing drought effects across sites and accurately quantifying 
drought resistance free from temporal stochasticity (Table 1). Here, I demonstrate how IRFs can resolve this 
complexity by calculating ecosystem resistance to and recovery from drought for 14 globally-distributed 
herbaceous sites previously identified to possess significant lag effects. 

Following Sala et al. 2012, I identified 14 datasets composed of both annual precipitation and ANPP in 
herbaceous communities. Gap years in either ANPP or primary production were filled using a radial basis 
function. Radial basis functions (i.e. Gaussian processes) are commonly used to impute missing data in time 
series; however there are many imputation methods, including most common attribute, mean value, K-nearest 
neighbors, K-means clustering, expectation maximization, singular value decomposition or multivariate 
imputation by chained equations (Luengo et al. 2010, van Buuren and Groothuis-Oudshoorn 2011). I chose the 
simplest method because the emphasis here is on ARX examples, but ecologists should carefully consider the 
various methods of missing data imputation for real datasets. I kept only datasets with ten or more years. Prior 
to analyses, I standardized and detrended ANPP and precipitation for each dataset. I then fit the following 
models to each dataset: 

ARX (0) ANPP𝑡𝑡 = βPPT𝑡𝑡
ARX (1) ANPP𝑡𝑡 = βPPT𝑡𝑡 + φ1ANPP𝑡𝑡−1
ARX (2) ANPP𝑡𝑡 = βPPT𝑡𝑡 + φ1ANPP𝑡𝑡−1 +φ2ANPP𝑡𝑡−2

 

where ANPP is standardized, detrended ANPP and PPT is standardized, detrended precipitation. Following 
model fitting, I chose the best model for each dataset using BIC. After identifying the appropriate ARX model for 
each site, I calculated resistance and recovery following a 2σ decline in precipitation. In this way, ecosystem 
resistance and recovery were all calculated for the same magnitude of rainfall reduction relative to ambient 
conditions at each site. After calculating resistance and recovery of each site, I regressed each metric against 
mean annual precipitation derived from WorldClim. 

Using the IRF method, primary production at the majority of sites (71%) was best described by an ARX(0) model, 
indicative of no lag effects (Table 5). Of the four sites exhibiting lag effects, three were best fit by an ARX(1) 
model and only one site was best fit by an ARX(2) model (Table 5). Resistance to a 2σ decline in precipitation 
varied among sites from a minimum of 2σ decline in ANPP at XLN to a 0.5σ increase in ANPP at NRB (Fig. 7A). 
Indeed, a significant positive relationship between drought resistance and mean annual precipitation (p = 0.008) 
indicated that drier herbaceous sites were generally less resistant to drought than mesic systems. Yet the 
relationship was not strong (R2 = 0.41); even dry sites varied significantly in drought resistance. For example, JRN 
possesses roughly the same mean annual precipitation as XLN, yet JRN was 68% more resistant to a 2σ reduction 
in rainfall than XLN (Fig. 7A). Such variability in drought resistance among sites of similar precipitation has been 
previously reported (Huxman et al. 2004a) and could derive from differences in species composition, rainfall 
patterns (e.g. monsoonal, Mediterranean, etc.) or management history among sites. Relatively few grasslands 
demonstrated lag effects, such that most sites exhibited perfect recovery in the year following drought (Fig. 7B). 
There was no relationship between mean annual precipitation and the strength of recovery (Fig. 7B). 



 
Figure 7 (A) Relationship between resistance to a 2σ drought, calculated from impulse response functions and 
mean annual precipitation for 14 herbaceous systems. Line shows the best fit by least squares. (B) Relationship 
between recovery from a 2σ drought, calculated from impulse response functions and mean annual 
precipitation for 14 herbaceous systems. 
 

Table 5. ΔBIC values of ARX(p) models for 14 grassland sites used in (Sala et al. 2012). Bold denotes the best 
model, chosen by ΔBIC < 2. In the case of multiple competing models, I chose the simplest model following the 
principle of parsimony 

Site ARX(0) ARX(1) ARX(2) 
Badkhyz, Turkmenistan (BDK) 0.0 2.8 6.3 
Cheyenne, Wyoming (CHY) 0.0 2.4 4.3 
Dzhanybek, Kazakhstan (DZH) 0.0 3.0 6.5 
Jornada, New Mexico (JRN) 0.0 3.2 4.8 
Konza Prairie, Kansas (KNZ) 0.0 3.3 6.7 
Kursk, Russia (KRS) 0.0 1.3 3.5 
Manyberries, Alberta (MBR) 4.1 0.0 2.1 
Nairobi, Kenya (NRB) 0.0 0.8 2.6 
Niwot Ridge, Colorado (NWT) 14.0 0.0 0.4 
Rio Mayo, Argentina (RMY) 0.1 2.1 0.0 
Sevilleta, New Mexico (SEV) 0.0 0.9 1.3 
Fort Collins, Colorado (SGS) 0.0 0.0 2.7 
Tumugi, China (TMG) 1.6 0.0 2.0 
Xilingol, China (XLN) 1.90 1.80 0.0 

 

Conclusions 
Given the expected increase in both the severity and intensity of extreme disturbance events, it is imperative 
that we accurately quantify how ecosystems respond to disturbance. Estimating ecosystem vulnerability to 
disturbance using long-term time series data is a promising approach, but ecologists have not yet coupled time 
series data with the appropriate statistical time-series tools. Most current methods possess flaws that 
potentially bias estimates of ecosystem susceptibility to disturbance and potentially misidentify legacy effects. 
To resolve these issues, I advocate for using IRFs derived from autoregressive time series models as a single 
quantitative framework that can accurately estimate ecosystem resistance, recovery, elasticity and return time 
from disturbance events. Impulse response functions have numerous advantages over prior techniques, 
including the separation of observation and process errors, standardizing disturbance severity among different 
locations, and rigorously testing for legacy effects. 
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One advantage of the method proposed here is the relative ease with which ARX models can be fit and IRFs 
calculated in common statistical programming languages. The following recommendations would prove 
beneficial for ecologists wishing to implement the method outlined here: 

1. Properly pre-treat data – Data must be processed properly prior to analysis with autoregressive models. 
First, data must be examined for gaps, as simple ARX models proposed here do not function with non-
contiguous data. Small gaps can be filled with a data imputation function (e.g. radial basis functions, 
used here). Second, data must be detrended. ARX models assume stationarity, wherein the mean and 
variance do not change through time. Detrending data by using the residuals from a linear regression 
against time can stabilize the mean through time, but variances must still be checked visually. Third, 
data should be standardized in order to facilitate comparison among sites by subtracting the mean and 
dividing by the standard deviation. For example, if precipitation is not standardized, then α = −2 for the 
IRF is only a 2 mm decline in rainfall, rather than an extreme 2σ event. In some cases, it might be 
preferable not to standardize. In the crab larvae example, not standardizing SST and using α = 2 tests the 
system's response to a 2°C increase in temperature, relevant for some climate scenarios. However, in 
most cases, standardizing the data will allow researchers to compare IRFs among disparate systems, 
locations or stress responses. The decision whether or not to standardize data should be made carefully 
depending on the question asked. 

2. Use a 2σ increase or decrease in the exogenous predictor – If all ecologists use a 2σ change in the 
exogenous predictor, then results are perfectly comparable among studies. I chose 2σ because it 
represents an extreme event. For example, a 1σ decline in rainfall is the 16% quantile, whereas a 2σ 
decline in rainfall represents a drought falling in the 2% quantile (assuming a normal distribution), 
thereby representing an extreme stress event. However, ecologists are also free to use whatever α they 
feel appropriate for the question at hand, so long as it is reported and justified. 

3. Report the autoregressive order and parameter values – Reporting the parameters enables future 
researchers to easily extract the IRF and calculate ecosystem disturbance responses under different x*. 
For example, ecologists could standardize all IRFs to a 2σ stress if variation exists in the literature, or 
could assess ecosystem recovery using values different from a 50% return in ecosystem function. 
Alternatively, future researchers could use IRFs to assess how systems respond to multiple disturbance 
events of either identical or varying magnitude. 

4. Use designated AR model fitting functions – The ARX functions specified here could all be fit using least 
squares. Doing so, however, requires trimming the first two data points from all model fits because we 
cannot use information theory or likelihood ratio tests to compare models fit to different datasets (e.g. 
n points for ARX(0), n − 1 points for ARX(1), n − 2 points for ARX(2), etc.). For small datasets, the loss of 
two data points can substantially alter the results. For example, using OLS to fit an ARX(0) model to the 
RMY data without the first two data points (n = 8) results in no relationship between primary production 
and precipitation (p = 0.65) because the first two data points are the driest and wettest years. Using the 
full dataset (n = 10) yields a stronger primary production–precipitation relationship (p = 0.12). Common 
statistical languages have ARIMAX functions (R: TSA library, Python: statsmodels module) wherein the 
user can specify the AR order, incorporate an exogenous predictor, and utilize the full dataset. 

Using time series of adequate length is perhaps the most important consideration for ARX models and 
subsequent IRFs. As described above, ARX models are relatively straightforward linear models, and as such the 
same recommendations of sample size for linear models apply to ARX models. It is generally recommended that 
a dataset contain 10 observations per parameter being estimated. Thus, ARX(2) models should ideally be fit to 
time series with at least 30 contiguous points. However, I recognize that most time series are considerably 



shorter. It is possible to use short time series in ARX(2) models; I advise no fewer than 10 points. This provides 
data points per parameter (plus one). Furthermore, longer time series have a greater probability of including an 
extreme event and thus will model IRFs more accurately. 

A second important consideration is the relationship between the exogenous predictor and the response. The 
exogenous predictor should be linearly related to the ecosystem response, otherwise ARX models and IRFs will 
yield nonsensical results. This is best illustrated with an example. An outbreak of crown-of-thorns starfish 
occurred on the coral reefs around Moorea in the mid-2000s, devastating coral cover. Corals slowly recovered 
after starfish returned to normal densities. I attempted to model this with an ARX model and IRF, but the effect 
of starfish on coral cover was non-significant or even positive! The model correctly identified the slow recovery 
time of corals, but gave the impression that starfish had minimal or even positive effects on coral cover. The 
reason for this behavior was the dichotomous nature of starfish data: starfish were either hyperabundant or 
nearly absent, and the relationship between starfish abundance and coral cover was therefore nonlinear and 
exhibited a threshold response. ARX models will probably struggle with hurricanes, forest fires or other 
stochastic, ‘all-or-nothing' disturbances. The ARX model works best for assessing disturbance from an exogenous 
predictor that exhibits a range of values, such as precipitation, temperature, salinity, etc. 

In conclusion, IRFs provide ecologists with a quick and simple means for quantifying ecosystem responses to 
disturbance, while enabling ecologists to capitalize on the increased availability of long-term, observational time 
series data. Ecologists can use this method to quantify the components of ecosystem disturbance response in a 
standardized way across many sites. Site-specific information on species composition, long-term climate, rainfall 
patterns or any other important variable can then be used to identify the abiotic and biotic factors that dictate 
ecosystem stress response. For example, the brief analyses presented here suggest that dry grasslands are often 
more sensitive to drought than wet grasslands, but also that our understanding of differential ecosystem 
sensitivity to drought remains incomplete. ARX models can even be used when there are multiple exogenous 
drivers, such as temperature and precipitation, by including an additional predictor in the model. As a result, 
IRFs should greatly improve our ability to predict how ecosystems will respond to the increased severity and 
frequency of extreme disturbance events in the future. 
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