4,454 research outputs found
Coordinate systems for differential correction
System of state transition partial derivatives for which tracking information normal matrix for lunar orbiter is nearly diagonalize
A universal formulation for conic trajectories. Basic variables and relationships
Truncated trigonometric functions for conic trajectory formulation in space flight application
Promoting a Regional Foreign Copying Program: The Historic New Orleans Collection Experience
The Historic New Orleans Collection, as a museum and research center, seeks to document the developing profile of New Orleans. Awalk through the fabled cemeteries or Cities of the Dead in New Orleans reveals the French and Spanish colonial demography. While the German, Irish, French, and Italian immigrants received the most attention during the nineteenth century, there were also Belgian, Hungarian, Yugoslav, and Dutch immigrants. The 1850 census indicates that Louisiana had a significant foreignborn population even then. Immigrants accounted for 26 percent of the population in Louisiana, far greater than that of neighboring states. During the twentieth century, Louisiana opened its arms to immigrants-especially Vietnamese, and Hispanics primarily from Central America
Dimensionless scaling of heat-release-induced planar shock waves in near-critical CO2
We performed highly resolved one-dimensional fully compressible Navier-Stokes
simulations of heat-release-induced compression waves in near-critical CO2. The
computational setup, inspired by the experimental setup of Miura et al., Phys.
Rev. E, 2006, is composed of a closed inviscid (one-dimensional) duct with
adiabatic hard ends filled with CO2 at three supercritical pressures. The
corresponding initial temperature values are taken along the pseudo-boiling
line. Thermodynamic and transport properties of CO2 in near-critical conditions
are modeled via the Peng-Robinson equation of state and Chung's Method. A heat
source is applied at a distance from one end, with heat release intensities
spanning the range 10^3-10^11 W/m^2, generating isentropic compression waves
for values < 10^9 W/m^2. For higher heat-release rates such compressions are
coalescent with distinct shock-like features (e.g. non-isentropicity and
propagation Mach numbers measurably greater than unity) and a non-uniform
post-shock state is present due to the strong thermodynamic nonlinearities. The
resulting compression wave intensities have been collapsed via the thermal
expansion coefficient, highly variable in near-critical fluids, used as one of
the scaling parameters for the reference energy. The proposed scaling applies
to isentropic thermoacoustic waves as well as shock waves up to shock strength
2. Long-term time integration reveals resonance behavior of the compression
waves, raising the mean pressure and temperature at every resonance cycle. When
the heat injection is halted, expansion waves are generated, which counteract
the compression waves leaving conduction as the only thermal relaxation
process. In the long term evolution, the decay in amplitude of the resonating
waves observed in the experiments is qualitatively reproduced by using
isothermal boundary conditions.Comment: As submitted to AIAA SciTech 2017, available at
http://arc.aiaa.org/doi/pdf/10.2514/6.2017-008
Palliative care in residential aged care: Identifying and funding palliative care needs in Australia
Probing the hydrogen melting line at high pressures by dynamic compression
We investigate the capabilities of dynamic compression by intense heavy ion beams to yield information about the high pressure phases of hydrogen. Employing ab initio simulations and experimental data, a new wide range equation of state for hydrogen is constructed. The results show that the melting line up to its maximum as well as the transition from molecular fluids to fully ionized plasmas can be tested with the beam parameters soon to be available. We demonstrate that x-ray scattering can distinguish between phases and dissociation states
Gaussian-Charge Polarizable Interaction Potential for Carbon Dioxide
A number of simple pair interaction potentials of the carbon dioxide molecule
are investigated and found to underestimate the magnitude of the second virial
coefficient in the temperature interval 220 K to 448 K by up to 20%. Also the
third virial coefficient is underestimated by these models. A rigid,
polarizable, three-site interaction potential reproduces the experimental
second and third virial coefficients to within a few percent. It is based on
the modified Buckingham exp-6 potential, an anisotropic Axilrod-Teller
correction and Gaussian charge densities on the atomic sites with an inducible
dipole at the center of mass. The electric quadrupole moment, polarizability
and bond distances are set to equal experiment. Density of the fluid at 200 and
800 bars pressure is reproduced to within some percent of observation over the
temperature range 250 K to 310 K. The dimer structure is in passable agreement
with electronically resolved quantum-mechanical calculations in the literature,
as are those of the monohydrated monomer and dimer complexes using the
polarizable GCPM water potential. Qualitative agreement with experiment is also
obtained, when quantum corrections are included, for the relative stability of
the trimer conformations, which is not the case for the pair potentials.Comment: Error in the long-range correction fixed and three-body dispersion
introduced. 32 pages (incl. title page), 7 figures, 9 tables, double-space
Molecular Density Functional Theory of Water describing Hydrophobicity at Short and Long Length Scales
We present an extension of our recently introduced molecular density
functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619,
2013] to the solvation of hydrophobic solutes of various sizes, going from
angstroms to nanometers. The theory is based on the quadratic expansion of the
excess free energy in terms of two classical density fields, the particle
density and the multipolar polarization density. Its implementation requires as
input a molecular model of water and three measurable bulk properties, namely
the structure factor and the k-dependent longitudinal and transverse dielectric
susceptibilities. The fine three-dimensional water structure around small
hydrophobic molecules is found to be well reproduced. In contrast the computed
solvation free-energies appear overestimated and do not exhibit the correct
qualitative behavior when the hydrophobic solute is grown in size. These
shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by
complementing the functional with a truncated hard-sphere functional acting
beyond quadratic order in density. It makes the resulting functional compatible
with the Van-der-Waals theory of liquid-vapor coexistence at long range.
Compared to available molecular simulations, the approach yields reasonable
solvation structure and free energy of hard or soft spheres of increasing size,
with a correct qualitative transition from a volume-driven to a surface-driven
regime at the nanometer scale.Comment: 24 pages, 8 figure
Shape oscillations of a charged diamagnetically-levitated droplet
We investigate the effect of electrical charge on the normal mode frequencies
of electrically-charged diamagnetically levitated water droplets with radii
4.5-7.5 mm using diamagnetic levitation. This technique allows us to levitate
almost spherical droplets and therefore to directly compare the measured
vibrational frequencies of the first seven modes of the charged droplet with
theoretical values calculated by Lord Rayleigh, for which we find good
agreement
QCD Viscosity to Entropy Density Ratio in the Hadronic Phase
Shear viscosity (eta) of QCD in the hadronic phase is computed by the coupled
Boltzmann equations of pions and nucleons in low temperatures and low baryon
number densities. The eta to entropy density ratio eta/s maps out the nuclear
gas-liquid phase transition by forming a valley tracing the phase transition
line in the temperature-chemical potential plane. When the phase transition
turns into a crossover, the eta/s valley gradually disappears. We suspect the
general feature for a first-order phase transition is that eta/s has a
discontinuity in the bottom of the eta/s valley. The discontinuity coincides
with the phase transition line and ends at the critical point. Beyond the
critical point, a smooth eta/s valley is seen. However, the valley could
disappear further away from the critical point. The eta/s measurements might
provide an alternative to identify the critical points.Comment: 16 pages, 4 figures. Minor typos corrected and references adde
- …