1,195 research outputs found

    Approaching the ground state of the kagome antiferromagnet

    Get PDF
    Y{0.5}$Ca{0.5}BaCo4O7 contains kagome layers of Co ions, whose spins are strongly coupled according to a Curie-Weiss temperature of -2200 K. At low temperatures, T = 1.2 K, our diffuse neutron scattering study with polarization analysis reveals characteristic spin correlations close to a predicted two-dimensional coplanar ground state with staggered chirality. The absence of three dimensional long-range AF order proves negligible coupling between the kagome layers. The scattering intensities are consistent with high spin S=3/2 states of Co2+ in the kagome layers and low spin S=0 states for Co3+ ions at interlayer sites. Our observations agree with previous Monte Carlo simulations indicating a ground state of only short range chiral order.Comment: 4 pages, 4 figures, contact author: [email protected]

    Low Energy Singlets in the Excitation Spectrum of the Spin Tetrahedra System Cu_2Te_2O_5Br_2

    Full text link
    Low energy Raman scattering of the s=1/2 spin tetrahedra system Cu_2Te_2O_5Br_2 is dominated by an excitation at 18 cm^{-1} corresponding to an energy E_S=0.6\Delta, with \Delta the spin gap of the compound. For elevated temperatures this mode shows a soft mode-like decrease in energy pointing to an instability of the system. The isostructural reference system Cu_2Te_2O_5Cl_2 with a presumably larger inter-tetrahedra coupling does not show such a low energy mode. Instead its excitation spectrum and thermodynamic properties are compatible with long range Neel-ordering. We discuss the observed effects in the context of quantum fluctuations and competing ground states.Comment: 5 pages, 2 figures, ISSP-Kashiwa 2001, Conference on Correlated Electron

    Magnetism of a tetrahedral cluster-chain

    Full text link
    Magnetic properties of a completely frustrated tetrahedral chain are briefly summarized. Using exact diagonalization, and bond-operator theory results for the ground-state phase diagram, the one-triplet excitations and the Raman spectrum are given. The link to novel tellurate materials is clarified.Comment: 2 pages, 3 figure

    Substitution effects on spin fluctuations in the spin-Peierls compound CuGeO_3

    Full text link
    Using Raman scattering we studied the effect of substitutions on 1D spin fluctuations in CuGeO_3 observed as a spinon continuum in frustration induced exchange scattering. For temperatures below the spin-Peierls transition (T_{SP}=14K) the intensity of this continuum at 120-500 cm^{-1} is exponentially suppressed and transferred into a 3D two-magnon density of states. Besides a spin-Peierls gap-induced mode at 30 cm^{-1} and additional modes at 105 and 370 cm^{-1} are observed. Substitution of Zn on the Cu-site and Si on the Ge-site of CuGeO_3 quenches easily the spin-Peierls state. Consequently a suppression of the spin-Peierls gap observable below T_{SP}=14K as well as a change of the temperature dependence of the spinon continuum are observed. These effects are discussed in the context of a dimensional crossover of this compound below T_{SP} and strong spin-lattice interaction.Comment: 9 pages, 2 eps figures include

    Longitudinal magnon in the tetrahedral spin system Cu2Te2O5Br2 near quantum criticality

    Full text link
    We present a comprehensive study of the coupled tetrahedra-compound Cu2Te2O5Br2 by theory and experiments in external magnetic fields. We report the observation of a longitudinal magnon in Raman scattering in the ordered state close to quantum criticality. We show that the excited tetrahedral-singlet sets the energy scale for the magnetic ordering temperature T_N. This energy is determined experimentally. The ordering temperature T_N has an inverse-log dependence on the coupling parameters near quantum criticality

    Thermodynamics of Coupled Identical Oscillators within the Path Integral Formalism

    Full text link
    A generalization of symmetrized density matrices in combination with the technique of generating functions allows to calculate the partition function of identical particles in a parabolic confining well. Harmonic two-body interactions (repulsive or attractive) are taken into account. Also the influence of a homogeneous magnetic field, introducing anisotropy in the model, is examined. Although the theory is developed for fermions and bosons, special attention is payed to the thermodynamic properties of bosons and their condensation.Comment: 13 REVTEX pages + 9 postscript figure

    Xenogeneic, extracorporeal liver perfusion in primates improves the ratio of branched-chain amino acids to aromatic amino acids (Fischer's ratio)

    Get PDF
    In fulminant hepatic failure (FHF), the development of hepatic encephalopathy is associated with grossly abnormal concentrations of plasma amino acids (PAA). Normalization of the ratio of branched-chain amino acids to aromatic amino acids (Fischer's ratio) correlates with clinical improvement. This study evaluated changes in PAA metabolism during 4 h of isolated, normothermic extracorporeal liver perfusion using a newly designed system containing human blood and a rhesus monkey liver. Bile and urea production were within the physiological range. Release of the transaminases AST, ALT and LDH were minimal. The ratio of branched (valine, leucine, isoleucine) to aromatic (tyrosine, phenylalanine) amino acids increased significantly. These results indicate that a xenogeneic extracorporeal liver perfusion system is capable of significantly increasing Fischer's ratio and may play a role in treating and bridging patients in FHF in the future

    Density and Pair Correlation Function of Confined Identical Particles: the Bose-Einstein Case

    Full text link
    Two basic correlation functions are calculated for a model of NN harmonically interacting identical particles in a parabolic potential well. The density and the pair correlation function of the model are investigated for the boson case. The dependence of these static response properties on the complete range of the temperature and of the number of particles is obtained. The calculation technique is based on the path integral approach of symmetrized density matrices for identical particles in a parabolic confining well.Comment: 8 pages (REVTEX) + 6 figures (postscript
    corecore