320 research outputs found

    Efficient treatment allocation in 2x2 cluster randomized and multicentre trials

    Get PDF

    Local gating of a graphene Hall bar by graphene side gates

    Full text link
    We have investigated the magnetotransport properties of a single-layer graphene Hall bar with additional graphene side gates. The side gating in the absence of a magnetic field can be modeled by considering two parallel conducting channels within the Hall bar. This results in an average penetration depth of the side gate created field of approx. 90 nm. The side gates are also effective in the quantum Hall regime, and allow to modify the longitudinal and Hall resistances

    The effect of heterogeneous variance on efficiency and power of cluster randomized trials with a balanced 2x2 factorial design

    Get PDF
    Sample size calculation for cluster randomized trials (CRTs) with a 2x2 factorial design is complicated due to the combination of nesting (of individuals within clusters) with crossing (of two treatments). Typically, clusters and individuals are allocated across treatment conditions in a balanced fashion, which is optimal under homogeneity of variance. However, the variance is likely to be heterogeneous if there is a treatment effect. An unbalanced allocation is then more efficient, but impractical because the optimal allocation depends on the unknown variances. Focusing on CRTs with a 2x2 design, this paper addresses two questions: How much efficiency is lost by having a balanced design when the outcome variance is heterogeneous? How large must the sample size be for a balanced allocation to have sufficient power under heterogeneity of variance? We consider different scenarios of heterogeneous variance. Within each scenario, we determine the relative efficiency of a balanced design, as a function of the level (cluster, individual, both) and amount of heterogeneity of the variance. We then provide a simple correction of the sample size for the loss of power due to heterogeneity of variance when a balanced allocation is used. The theory is illustrated with an example of a published 2x2 CRT

    Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes

    Full text link
    Monolayer graphene exhibits exceptional electronic and mechanical properties, making it a very promising material for nanoelectromechanical (NEMS) devices. Here, we conclusively demonstrate the piezoresistive effect in graphene in a nano-electromechanical membrane configuration that provides direct electrical readout of pressure to strain transduction. This makes it highly relevant for an important class of nano-electromechanical system (NEMS) transducers. This demonstration is consistent with our simulations and previously reported gauge factors and simulation values. The membrane in our experiment acts as a strain gauge independent of crystallographic orientation and allows for aggressive size scalability. When compared with conventional pressure sensors, the sensors have orders of magnitude higher sensitivity per unit area.Comment: 20 pages, 3 figure

    Edge-functionalized and substitutional doped graphene nanoribbons: electronic and spin properties

    Full text link
    Graphene nanoribbons are the counterpart of carbon nanotubes in graphene-based nanoelectronics. We investigate the electronic properties of chemically modified ribbons by means of density functional theory. We observe that chemical modifications of zigzag ribbons can break the spin degeneracy. This promotes the onset of a semiconducting-metal transition, or of an half-semiconducting state, with the two spin channels having a different bandgap, or of a spin-polarized half-semiconducting state -where the spins in the valence and conduction bands are oppositely polarized. Edge functionalization of armchair ribbons gives electronic states a few eV away from the Fermi level, and does not significantly affect their bandgap. N and B produce different effects, depending on the position of the substitutional site. In particular, edge substitutions at low density do not significantly alter the bandgap, while bulk substitution promotes the onset of semiconducting-metal transitions. Pyridine-like defects induce a semiconducting-metal transition.Comment: 12 pages, 5 figure

    Transmission through a biased graphene bilayer barrier

    Full text link
    We study the electronic transmission through a graphene bilayer in the presence of an applied bias between layers. We consider different geometries involving interfaces between both a monolayer and a bilayer and between two bilayers. The applied bias opens a sizable gap in the spectrum inside the bilayer barrier region, thus leading to large changes in the transmission probability and electronic conductance that are controlled by the applied bias.Comment: 10 pages, 8 figures, extended versio

    Correlation between local amplification effects and damage mechanism for monumental buildings

    Get PDF
    The damage and vulnerability survey of the monumental buildings, damaged by the 2002 earthquake in the Molise Region, has allowed singling out of a correlation between the observed damage of the churches and their morphological site conditions. The vulnerability model connected to the survey methodology provides an evaluation of the expected mean damage. Comparison with the observed damage determined the introduction of a local morphological behaviour modifier, able to take into account the vulnerability increase due to the site effects. In order to validate the previous results, a numerical 2-D analysis of the seismic local response has been performed. In particular, a numerical code, working with boundary elements, has been applied to the analyzed situations. The results, in terms of pseudo-acceleration response spectra and amplification factors, allow one to compare the numerical and the observed analyses. This comparison shows good agreement and allows one to find some correlations between the geometric characteristics of the sites, the values of the amplification coefficients and the damage mechanism activated

    Correlation between local amplification effects and damage mechanisms for monumental buildings

    Get PDF
    The damage and vulnerability survey of the monumental buildings, damaged by the 2002 earthquake in the Molise Region, has allowed singling out of a correlation between the observed damage of the churches and their morphological site conditions. The vulnerability model connected to the survey methodology provides an evaluation of the expected mean damage. Comparison with the observed damage determined the introduction of a local morphological behaviour modifier, able to take into account the vulnerability increase due to the site effects. In order to validate the previous results, a numerical 2-D analysis of the seismic local response has been performed. In particular, a numerical code, working with boundary elements, has been applied to the analyzed situations. The results, in terms of pseudo-acceleration response spectra and amplification factors, allow one to compare the numerical and the observed analyses. This comparison shows good agreement and allows one to find some correlations between the geometric characteristics of the sites, the values of the amplification coefficients and the damage mechanism activated

    Effetti di amplificazione topografica osservati sul patrimonio monumentale

    Get PDF
    La ricerca ha avuto l’obiettivo di indagare gli effetti di amplificazione sismica, per cause topografiche, che possono aver interessato le chiese danneggiate da alcuni terremoti storici italiani. La novità di questo studio consiste nell’aver messo a punto una metodologia di analisi che, partendo dall’osservazione degli effetti del terremoto sull’edificio, confronta il danno osservato ed il danno atteso, calcolato attraverso modelli basati su dati statisticamente affidabili, prevede una fase di rilevo delle caratteristiche geologiche, geomorfologiche, geotecniche e geofisiche dei siti di ubicazione delle chiese, arriva a quantificare, anche attraverso modellazioni numeriche della risposta sismica locale, l’influenza che la morfologia di questi siti può aver avuto nel determinare l’incremento dell’input sismico e conseguentemente del danno osservato
    • …
    corecore