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Article

The effect of heterogeneous
variance on efficiency and power
of cluster randomized trials with
a balanced 2� 2 factorial design

Francesca Lemme,1 Gerard JP van Breukelen,2

Math JJM Candel2 and Martijn PF Berger1

Abstract

Sample size calculation for cluster randomized trials (CRTs) with a 2� 2 factorial design is complicated

due to the combination of nesting (of individuals within clusters) with crossing (of two treatments).

Typically, clusters and individuals are allocated across treatment conditions in a balanced fashion, which

is optimal under homogeneity of variance. However, the variance is likely to be heterogeneous if there is a

treatment effect. An unbalanced allocation is then more efficient, but impractical because the optimal

allocation depends on the unknown variances. Focusing on CRTs with a 2� 2 design, this paper addresses

two questions: How much efficiency is lost by having a balanced design when the outcome variance is

heterogeneous? How large must the sample size be for a balanced allocation to have sufficient power

under heterogeneity of variance? We consider different scenarios of heterogeneous variance. Within each

scenario, we determine the relative efficiency of a balanced design, as a function of the level (cluster,

individual, both) and amount of heterogeneity of the variance. We then provide a simple correction of the

sample size for the loss of power due to heterogeneity of variance when a balanced allocation is used.

The theory is illustrated with an example of a published 2� 2 CRT.

Keywords

Balanced design, optimal design, heterogeneous variance, 2� 2 factorial, cluster randomized trial

1 Introduction

An important issue in the design phase of a randomized trial concerns the optimal allocation of units
across the treatment conditions being compared in order to achieve a certain power to detect a
treatment effect, or to obtain a certain precision for the treatment effect estimator. Randomized
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trials are frequently run in populations with a multilevel data structure with individuals nested
within clusters, for instance, pupils in schools or patients in general practices. In this case
randomized treatment assignment can be done at the cluster level (cluster randomized trials or
CRTs) or at the individual level (multicentre trials). Cluster randomization is proven less efficient
than individual randomization, as the outcome variance between clusters in the same treatment arm
increases the sampling variance of the treatment effect.1–3 However, for some types of intervention
individual randomization is logistically impossible, for example school health promotion programs
delivered in the class rooms. Then, at best classes instead of individual pupils can be randomized.
Further, randomization at the individual or even at the class level may induce serious treatment
contamination through exchange of treatment information between treated and control subjects,
leading to a reduced treatment contrast and, thereby, also a reduced power to detect a treatment
effect. Randomization of entire schools may then be the best option.

As mentioned above, outcome variation between clusters unfortunately makes cluster
randomization less efficient than individual randomization.1,2 This makes an efficient study
design important especially for CRTs. The sample size should be as large as possible in order
to have maximum precision of treatment effect estimation, and maximum power to detect a
treatment effect. However, the high costs of scientific studies, and the burden of study
participation to clusters (i.e. schools or general practices), require the sample size to be as
small as possible. Optimal design4,5 helps researchers to find a balance between efficiency and
power and sampling costs, by maximizing precision and power under budget and costs
constraints. In the context of CRTs it has been shown how the optimal sample size at each
design level (cluster, individual) depends on the ratio of cluster level outcome variance to
individual level outcome variance as expressed by the intraclass correlation.1–3 In the context
of individual randomization it has been shown how the optimal treatment:control allocation
ratio depends on the ratio of the treated to control outcome variance.6 However to our
knowledge, optimal design of a CRT with heterogeneous variance has not been studied yet.
Moreover, the outcome variance at each design level and in each treatment arm is unknown at
the design stage of a study, which is an obstacle to optimal design. Therefore, the aim of this
paper is to study the optimal sample size and optimal treatment allocation ratio of a CRT under
heterogeneity of variance at each design level (cluster, individual), to evaluate the efficiency of
the commonly used balanced allocation relative to the optimal design, and to find a practical
procedure for sample size calculation for a CRT with heterogeneous variances.

The issue of unknown but heterogeneous outcome variance at the design stage of a study has
been addressed by a number of authors. For one-way ANOVA with unclustered data and
heterogeneous variance, Jan and Shieh7 examined methodology to have a minimum sample
size such that the expected half-width of the confidence interval is within designated
boundaries, and Wong and Zhu8 developed optimal treatment allocation rules for various
contrasts of interest. Furthermore, Guo and Luh9 and Schouten6 took into account the costs
per included individual. For the case of CRTs with a two-arm design, equations to compute the
optimal design have been published, for homogeneous variances, by Moerbeek et al.1 and by
Raudenbush2 and, for heterogeneous variances, by Moerbeek and Wong10 and Candel and van
Breukelen.11 However, Moerbeek and Wong,10 consider clustering in one treatment arm only
and Candel and van Breukelen11 optimize only the number of clusters but not the cluster sizes.
Moreover, none of the work published in the literature considers efficient treatment allocation
within a nested design with more than two treatment conditions when the outcome variance is
heterogeneous. Among nested designs, CRTs with a 2� 2 factorial design have been adopted for
various purposes in public health and medicine.12–19 Therefore, we will focus our work on CRTs

Lemme et al. 575



with a 2� 2 factorial design but our results will also apply to CRTs with two treatment groups
as will be seen later.

In CRTs with a 2� 2 factorial design two treatment factors are evaluated at the same time, by
allocating clusters to one of four conditions. An example of a 2� 2 factorial design is a trial
comparing a new decision aid tool (Statin Choice) with a standard tool (Standard Pamphlet) to
assist clinicians and patients with diabetes on sharing information about statin, and comparing two
methods of delivery of the decision tool (before or after the visit).19 A 2� 2 factorial design was
employed, with the following treatment conditions: statin choice during visit (SD), statin choice
before visit (SB), standard pamphlet during visit (PD), and standard pamphlet before visit (PB).
Usually, a balanced (or nearly balanced) allocation of units is adopted in 2� 2 CRTs, as in the
studies 12 to 19 in the reference list. This is optimal under homogeneity of variance,20 but not under
heterogeneity of variance. Further, as mentioned above, the optimal allocation depends on the
unknown variances at each design level (cluster, individual) in each treatment arm, which makes
optimal allocation unfeasible. Two obvious questions are then: (a) For a given study budget, and
given costs per included cluster and individual, how much efficiency is lost when a balanced design is
adopted instead of the design that is optimal under heterogeneity of variance? (b) Given the
adoption of a balanced design, how much power is lost when the variances are heterogeneous
instead of homogeneous and how can the sample size be adjusted for that loss? We address these
two questions at each level (cluster, individual) for three different plausible scenarios of
heterogeneous variance. Within each of these scenarios, we first use optimal design theory4,5 to
determine the optimal allocation of clusters to treatments as well as the relative efficiency of a
balanced allocation, as a function of the amount of heterogeneity of the variance at each design
level (cluster, individual). We then plot this relative efficiency of the balanced design against the
amount of heterogeneity of variance, for each scenario and for different values of the intraclass
correlation. Finally we extend a published formula for two-arm designs with a balanced allocation
to 2� 2 designs, and we show how the sample size can be adjusted for the loss of precision and
power due to heterogeneous variance when a balanced allocation is used.

The outline of this article is as follows. In section 2.1 we describe the statistical model, the
corresponding treatment effect estimators and their variances. In section 2.2 we then describe the
design optimality criteria used, and we present the equation for the optimal allocations of units
under heterogeneity of variance, as well as an equation for the relative efficiency of the balanced
design, relative to the optimal allocation. In section 2.3 we introduce the three heterogeneous
variance scenarios considered in this article, and an interpretable measure of heterogeneity of
variance across the four treatment conditions. In section 3, we graphically show the relative
efficiency of the balanced design as a function of the amount of heterogeneity of the variance
across the four conditions. In section 4, we provide a simple correction of the sample size for the
loss of power due to heterogeneity of variance when a balanced allocation is used, and we apply this
correction to a published 2� 2 CRT. Finally, in section 5 we discuss our results.

2 Methods

2.1 The statistical model

Consider that each cell of a 2� 2 factorial design is represented by rcð Þ indicating a row-column
combination of the design. So, in the Statin trial, cell (rc)¼ (11) is the new decision aid tool delivered
before the visit, cell (rc)¼ (12) is the new decision aid tool delivered during the visit, (rc)¼ (21) is the
standard tool delivered before the visit and (rc)¼ (22) is the standard tool delivered during the visit.
Assume that a total of K clusters is included into the study and denote each cluster by subscript j
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(j ¼ 1, . . . , ,K). Denote individuals within each cluster with subscript i (i ¼ 1, . . . , nrc, where nrc is the
number of individuals per cluster in cell rc of the 2� 2 design).

For two levels of nesting and cluster randomization, the model relating a continuous outcome to
treatment condition in a 2� 2 factorial design is:

yij ¼ �0j þ �1x1j þ �2x2j þ �3x3j þ "ij ð1Þ

with

�0j ¼ �0 þ u0j

where yij is the outcome for the ith individual within the jth cluster; x1j, x2j, x3j are three centered
treatment indicators, that is, coded as �1/þ1 rather than 0/1, for all individuals within the jth
cluster, with x1 and x2 as main effect indicators and x3 ¼ x1 � x2 as interaction indicator as
shown in the upper part of Table 1; b1, b2, and b3 are the regression coefficients for the three
treatment indicators; �0 is the grand mean of the outcome and �0j is the mean outcome in the jth
cluster; u0j and "ij are random effects at the cluster and individual levels, both normally distributed
with mean 0 and either homogeneous or heterogeneous variance across the four treatment
conditions. Note that, due to the centering of the treatment indicators x1 and x2, the
present model is an ANOVA model, with �1 and �2 the two ‘‘main effects’’ of treatment, as
shown in Table 1.

In the remainder of this article, we express homogeneous variance across the four cells as
varðu0jÞ ¼ �

2
u and varð"ijÞ ¼ �

2
" , and heterogeneous variance as varðu0jÞ ¼ �

2
urc and varð"ijÞ ¼ �

2
"rc,

where subscript rcð Þ indicates one cell (row-column combination) of the 2� 2 design.
Under homogeneity of sampling costs and outcome variances within conditions, equally

sized clusters within the same condition are optimal for estimating treatment effects with

Table 1. Coding schemes for the predictors in equation (1) and relations between cell means lrc and regression

parameters bh (upper part of the table) and regression parameters bh in equation (1) expressed as weighted sums of

cell means �rc, and the weights (lower part of the table).

Cell x0 x1 x2 x3 lrc

11 1 �1 �1 1 �11 ¼ �0 � �1 � �2 þ �3

12 1 �1 1 �1 �12 ¼ �0 � �1 þ �2 � �3

21 1 1 �1 �1 �21 ¼ �0 þ �1 � �2 � �3

22 1 1 1 1 �22 ¼ �0 þ �1 þ �2 þ �3

Contrast/parameter w(11) w(12) w(21) w(22) bh in terms of lrc

0 1/4 1/4 1/4 1/4 �0 ¼
�11þ�12þ�21þ�22

4

1 �1/4 �1/4 1/4 1/4 �1 ¼
ð�22þ�21Þ�ð�12þ�11Þ

4

2 �1/4 1/4 �1/4 1/4 �2 ¼
ð�22þ�12Þ�ð�21þ�11Þ

4

3 1/4 �1/4 �1/4 1/4 �3 ¼
ð�22þ�11Þ�ð�21þ�12Þ

4

The cell means �rc in the last column of the upper part of the table are obtained as � ¼ X�, where X is a 4� 4 matrix containing the

coding schemes showed in the upper part of the table and � is a 4� 1 vector containing the regression coefficients in equation (1);

the regression coefficients � in the last column of the lower part of the table are obtained as � ¼W�, where W is a 4� 4 matrix

containing the weights in the lower part of the table and W ¼ X�1.
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maximum precision.1,2 Model (1) can then be reduced to a one level model, with clusters as units and
cluster means as data. The maximum likelihood (ML) estimator of the fixed treatment effects then is:

�̂h ¼
X
rc

wrcðhÞ�̂rc ð2Þ

where wrc(h) is the weight for cell (rc) of the 2� 2 design as shown in the lower part of Table 1 with
respect to the hth regression coefficient (h¼ 1, ð, 3), and �̂rc is the ML estimator of the expected
outcome within cell (rc), which is computed as the average of the cluster means within that cell.21

From equation (2) and from independence between the four cell mean estimators �̂rc, it then follows
that the variance of the fixed-effects estimators �̂h(h¼ 0, ð , 3) is:

varð�̂hÞ ¼
X
rc

w2
rcðhÞvarð�̂rcÞ ¼

X
rc

w2
rcðhÞ �

1

krc
� �20rc þ

�2"rc
nrc

� �
ð3Þ

where krc and nrc are respectively the number of clusters and the number of subjects per cluster
(henceforth called the cluster size) in cell rcð Þ. Note that heterogeneous outcome variances �20rc and
�2"rc are assumed in equation (3). The special case of homogeneous variance is obtained by
substituting the homogeneous variances �2u and �2" for the heterogeneous variances �20rc and �2"rc.
Further, note that w2

rcðhÞ ¼ 1=16 for all rc(h) (see Table 1).

2.2 The derivation of the optimal design

2.2.1 The optimality criterion

The first step of our work is to derive the design which minimizes the variance of the estimators of
the fixed effects �h in equation (1) under the constraint of a fixed total budget for sampling clusters
and individuals, and under heterogeneity of variance. However, the present model has four fixed
effects, and so, to find the optimal design, some scalar function of the 4� 4 variance–covariance
matrix Covð�̂Þ of the treatment effect estimators, called an optimality criterion, must be chosen and
then minimized. In this article we consider that interest might either focus on a specific treatment
contrast, for instance the interaction, or be equally divided between all effects. In the first case, we
consider the variance of a single treatment effect estimator, which is an example of the c-criterion.4,5

In the second case, we consider the sum of the variances varð�̂hÞ of all four fixed effects in equation
(1), which is known in optimal design as the A-criterion, and the sum of the variances of the three
treatment effects, excluding �̂0, called As-criterion.

4,5 Now, in the present model all fixed-effect
estimators have the same variance (see equation (3) and the weights wrc in the lower part of
Table 1). Consequently, the c-criterion is proportional to the A- and As-criteria for this model,
and minimization of the c-criterion will give the same optimal design as minimization of the A-
or the As-criterion.

2.2.2 The optimal sample size

As mentioned in section 2.2.1, we want to derive a design which minimizes the variance of the
treatment effect estimators under the constraint of a fixed total budget. A cost function must
therefore be defined. Assume that inclusion of a cluster into any treatment condition (rc) costs c
currency units (e.g. Euros) and that inclusion of an individual within a cluster in any condition (rc)
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costs p units. The total budget B needed to include within the (rc)-th condition krc clusters with nrc
individuals each, is then:

B ¼
X
rc

Brc ¼
X
rc

krcðcþ p� nrcÞ ð4Þ

where Brc is the budget spent on treatment condition (rc) and the factor (cþ p� nrc) is the total
sampling cost per cluster of size nrc within cell (rc).

Finding an optimal design means finding, for each treatment condition, the number of clusters,
krc, and the number of subjects per cluster nrc, which minimize the c- criterion introduced in section
2.2.1, given the constraint in equation (4). These optimal sample sizes per level can be shown to
satisfy equation (5) (for details of the proof, see Appendix 1):

krc ¼
Brc

cþ p� nrc
, nrc ¼

ffiffiffiffiffiffiffiffi
�2"rc
�20rc

s ffiffiffi
c

p

r
ð5Þ

Equation (5) shows that the optimal cluster size nrc within each treatment condition depends on
the cluster-to-person cost ratio (c=p) and on the person-to-cluster variance ratio for that condition
(�2"rc=�

2
0rc), or equivalently, on the ratio 1� �rcð Þ=�rc. Here, �rc is the intraclass correlation (ICC) in

cell rcð Þ. This is defined as the proportion of the total variance due to variability at cluster level in cell
rcð Þ, that is �rc ¼ �

2
0rc=�

2
yrc, where �

2
yrc ¼ �

2
0rc þ �

2
"rc. In addition the optimal number of clusters krc

depends on Brc, the budget allocated to cell (rc), for which the optimal value is given by equation
(13) in Appendix 1, and this again depends on the variances and costs.

Note that if the total budget B in equation (4) is increased, the number of subjects per cluster
remains constant, whereas the total number of clusters increases. However, the relative distribution
of clusters across treatment conditions does not change (see equation (5)).

2.2.3 The relative efficiency measure

As shown by equation (5), the optimal design depends on the cluster level and individual level
outcome variances and is not balanced under heterogeneity of variance. In other words, the
optimal number of clusters and, except in the case of a homogeneous ICC (which requires a very
special case of heterogeneity of variance), also the optimal number of persons per cluster, varies
between the four cells (treatment conditions). Now, the outcome variance in equation (3) is an
unknown quantity in the design stage and a balanced design is commonly used. The question
now is how efficient a balanced design is compared to the optimal design for heterogeneous
variance. This can be addressed by considering the relative efficiency of the balanced design
versus the optimal design for heterogeneous variance, which can be shown to be (for details, see
Appendix 1):

RE ¼

P
rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� �20rc

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� �2"rc

p� �� �2

=BP
rc

n� �20rc þ �
2
"rc

� �
= k� nð Þ

ð6Þ

The numerator of equation (6) is the c-criterion for the optimal design for heterogeneous variances.
This is obtained by inserting equation (5) into equation (3) and then plugging in the optimal Brc as
derived in Appendix 1. The denominator of equation (6) is the c-criterion when the design is
balanced. This is obtained from equations (3) and (5) by substituting the average variances across
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the four conditions, that is �20ðavgÞ ¼
P
rc
�20rc=4 and �2"ðavgÞ ¼

P
rc
�2"rc=4, for the heterogeneous variances

�20rc and �
2
"rc. Thus, the optimal and balanced design are based on the same average variance at the

cluster level, the same average variance at the individual level, and on the same budget and costs.
This allows a fair comparison between the two designs. Note that the numerator of equation (6) is
simply the squared sum of eight terms, each involving one of the eight variances weighted by the
corresponding cost term (c for cluster, p for person). The denominator of the equation is likewise
the sum of eight variances, with weights 1=k for cluster variances and 1= k� nð Þ for person variances.
The practical implication of this is that the RE does not depend on which variance is
observed in which cell (treatment condition). For instance, it can occur that the cell with the
largest cluster level variance also has the largest individual level variance, or that it has the
smallest individual level variance. In both cases the RE of the balanced design compared to
the optimal design is the same.

Further, the relative efficiency measure in equation (6) depends on the ratio of individual to
cluster level variance and on the ratio of cluster to individual level costs. We therefore consider
three person-to-cluster variance ratios: 99, 19, and 9, implying, respectively, three realistic intraclass
correlations (ICC, as defined in section 2.2.2), as suggested by reviews of ICC values in primary care
trials:22,23 � ¼ 0:01, � ¼ 0:05, and � ¼ 0:10. Note that these ICC values are defined under
homogeneity of variances, i.e. � ¼ �20ðavgÞ=�

2
yðavgÞ, where �2yðavgÞ ¼ �

2
0ðavgÞ þ �

2
"ðavgÞ. Under

heterogeneity of variances, the ICC itself is heterogeneous in general, and its value for each cell
(rc) then follows from the constraint that the average variance (i.e. �20ðavgÞ or �

2
"ðavgÞ) will be kept the

same under all scenarios and all extents of heterogeneity.
Finally, we consider the same cluster-to-person cost ratios of 9, 19, and 99 as the person-to-cost

variance ratios, because the costs per cluster and per person are rarely reported in publications of
trials. These values cover a wide range of cost ratios.

2.3 The heterogeneous variance scenarios

Equation (5) in section 2.2.2 can be used to compute optimal designs for heterogeneous outcome
variances. However, different types of heterogeneity of outcome variances may occur. For instance,
the outcome variances in two cells of the 2� 2 design may be equal to each other and lower than
those in the other two cells of the design. Alternatively, the outcome variances may differ between all
four cells. We consider three scenarios, related to the outcome variance at cluster level in cell (rc) of
the 2� 2 design:

(1) �20ð11Þ ¼ �
2
0ð12Þ5 �20ð21Þ ¼ �

2
0ð22Þ

(2) �20ð11Þ5 �20ð12Þ ¼ �
2
0ð21Þ5 �20ð22Þ

(3) �20ð11Þ5 �20ð12Þ5 �20ð21Þ5 �20ð22Þ

We also consider the same three scenarios for heterogeneity of person level variance. Note that in
scenario 1, the outcome variance is affected by one treatment only, in scenario 2 it is affected to the
same extent by both treatments, and in scenario 3 it is affected by both treatments but not to the
same extent.

Each of the three scenarios may occur at either or at both levels of the data structure (i.e. one level
heterogeneous and the other homogeneous or both levels heterogeneous) and with different extents
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of heterogeneity. The heterogeneity is measured through the coefficient of variation. At cluster level,
it is defined as:

CV�2
0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
rc
ð�20rc � �

2
0ðavgÞÞ

2
=4

r
�20ðavgÞ

ð7Þ

Analogously, the coefficient of variation for the individual level variance can be obtained from
equation (7) by substituting �2" for �20 .

We assume equidistance of the heterogeneous outcome variances across the four conditions (see
Appendix 2 for further details). This implies that the maximum value of the coefficient of variation is
reached when the smallest variance is zero and the largest variance is twice the average variance.
However, this maximum differs between scenarios. For the sake of comparability between scenarios,
we therefore computed the ratio of the actual coefficient of variation, at either cluster (CV�2

0
) or

individual (CV�2" ) level, to the maximum possible coefficient of variation (CVmax), and used this ratio
as measure of heterogeneity of variances. A more intuitive, though less complete measure of
heterogeneity in case of more than two treatment arms, is the ratio of the largest to the smallest
variance. To improve the interpretability of the CV=CVmax measure, Table 2 shows selected values
of this measure with the corresponding ratio of largest to smallest variance, denoted by l for each of
the heterogeneity scenarios. As shown in the table, strong amounts of heterogeneity are covered
already by CV=CVmax values up to 0.60, that is, by CV values up to 60% of their maximum value.
Note that, in terms of the actual coefficient of variation for a given value of CV/CVmax, scenarios 1
and 2 are the extreme cases, with scenario 3 in-between. After all, in scenario 1 all four
variances are as far removed from the mean variance as possible, given the CV and CVmax,
whereas in scenario 2 two of the four variances are equal to the mean, and in scenario 3 these
two are closer to the mean than in scenario 1 (see the definition of the three scenarios at the
beginning of this section).

3 Results

In this section, we show the relative efficiency of a balanced design, relative to the optimal designs
for heterogeneous variance, as a function of the level (cluster, individual, or both) and extents
(measured by CV=CVmax) of heterogeneity of the variance, for various cost ratios and ICCs,
under variance scenario 1 and variance scenario 2. We do not show results related to variance

Table 2. Ratio of the largest and the smallest variance (l) for selected values of the coefficient of variation CV as

measure of heterogeneity of variances in scenarios 1 to 3.

CV=CVmax 0 0.30 0.35 0.40 0.50 0.60 0.80 0.85 0.90

Scenario (1) l 1 1.86 2.08 2.33 3 4 9 12.24 19

Scenario (2) l 1 1.86 2.08 2.34 3.02 4.03 9.17 12.65 19.76

Scenario (3) l 1 1.86 2.09 2.35 3.03 4.05 9.26 12.82 20.19

This table only shows selected values of CV=CVmax. Higher values of CV=CVmax imply (almost) zero variance in the treatment

condition with the smallest variance, which is improbable in reality.
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scenario 3 as this scenario is in-between scenario 1 and scenario 2, see section 2.3. At the end of the
section we then provide a practical application of our results.

Figures 1 and 2 show the RE of the balanced design under variance scenario 1 (Figure 1) and
under variance scenario 2 (Figure 2). The two figures contain two plots each, one for a cluster-to-
person cost ratio equal to 9 and one for a cost ratio equal to 99. Each plot contains RE functions for
two ICC values (0.01, thin lines, and 0.10, thick lines) and all three possible types of heterogeneity of

Figure 1. RE of a balanced design within variance scenario (1), for two cost ratios (9 and 99), two ICCs (p¼ 0.01

and p¼ 0.10,) and all three types of heterogeneity (cluster, individual, or both).
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variance within a scenario: heterogeneity at the cluster level only (squared markers), at the person
level only (dashed lines), and at both levels (solid lines). Further, to help interpretation of the results,
all plots in the two Figures contain a horizontal line indicating a relative efficiency of 0.90. Results
for the intermediate cost ratio of 19 and ICC of 0.05 are not shown, as the RE results obtained for
these values are in-between the RE results shown in Figures 1 and 2 for the two extreme values of the
cost ratio and ICC.

Focus first on Figure 1. Note that there are four instead of six curves in each plot. This is due to
two implications of the RE equation (6), of which formal proofs are available upon request.

Figure 2. RE of a balanced design within variance scenario (2), for two cost ratios (9 and 99), two ICCs (p¼ 0.01

and p¼ 0.10) and all three types of heterogeneity (cluster, individual, or both).
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First, one line with squared markers (heterogeneity at cluster level) and one dashed line
(heterogeneity at individual level) overlay each other. This is because the RE does not depend on
the level at which the heterogeneity occurs when the cluster-to-person cost ratio equals the person-
to-cluster variance ratio and the outcome variance is heterogeneous at one level only. Secondly, each
plot shows one instead of two continuous lines. This is because, when there is heterogeneity at both
levels, the relative efficiency does not depend on the cost ratio and ICC anymore.

Let us now turn to the implications of Figure 1 for the relative efficiency of the balanced design
under heterogeneity of variance. In both plots all curves are above a RE¼ 0.90 up to high extents of
heterogeneity of the variance. For instance, when the variance is heterogeneous at both levels (solid
line), the relative efficiency is above 90% when CV=CVmax is at most 0.60. This corresponds to
having a largest-to-smallest variance ratio (l) of at most 4. Further, all other curves are above the
solid curve and so the case of heterogeneity at both levels is the worst case in terms of the RE of the
balanced design.

Now consider Figure 2 for variance scenario 2. This shows the same trends as Figure 1.
The important difference between the two is that the lines in Figure 2 are higher than those in
Figure 1, and so the balanced design is even more efficient for variance scenario 2 than for scenario
1. In particular, the RE for the worst case of heterogeneity at both levels is now above 90% for
CV=CVmax up to almost 0.80, corresponding to l equal to almost 9. As explained in section 2.3, this
is because in scenario 1 all four cells have a nonaverage variance, against only two cells in scenario 2.
Apart from this difference in RE, the plots in Figure 1 and in Figure 2 are very similar.

Furthermore, Figures 1 and 2 show two other results which are worth mentioning. Firstly, the
two figures show that, when comparing lines within plots, as the ICC increases, the relative efficiency
decreases under heterogeneity at cluster level (i.e. thick squared markers are below thin squared
markers), but increases under heterogeneity at individual level (i.e. thick dashed lines are above thin
dashed lines). This finding can be understood by considering that, keeping the total variance
constant, an increasing ICC means an increasing cluster level variance and decreasing individual
level variance, which in turn increases the effect of heterogeneity of variance at cluster level and
decreases the effect of individual level variance.

Secondly, comparing between plots for different cost ratios, it can be seen that when heterogeneity
is at cluster level only (squared markers), the relative efficiency decreases as the cost ratio increases,
whereas the opposite occurs when heterogeneity is at individual level only (dashed lines).
The explanation for this finding is that, as the cost ratio increases, nrc increases and krc decreases
(see equation (5)). This in turn increases the effect of cluster level variance and decreases the effect of
individual level variance on the sampling variance of the fixed effects (see equation (3)). It likewise
increases the effect of cluster level heterogeneity of variance, and decreases the effect of individual
level heterogeneity of variance, on the relative efficiency of the balanced design.

Let us now consider the implications of our results to the statin trial by Jones et al.19 Remember
from the Introduction that this was a 2� 2 CRT comparing two decision aid tools for patients with
diabetes, new versus standard, and two methods of delivery of the tool, before versus during the
patient’s visit to the clinician introduced in section 1. One of the outcomes of interest was a summary
acceptability score, obtained by averaging the scores from a 5-question, 7-point Likert scale of
acceptability. The researchers reported an almost balanced allocation of patients in each
condition, with n ¼ 26 patients in each of the two statin choice conditions (SB and SD) and
n ¼ 23 patients in each of the two standard pamphlet conditions (PB and PD). Unfortunately the
researchers only reported a total number of endocrinologists equal to 21 but did not report the
allocation ratio of the endocrinologists into each condition. Given the reported balanced allocation
at the patients’ level and the use of a balanced allocation at both cluster and individual levels in all
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other trials mentioned in section 1, we assume it was balanced at cluster level as well, with
approximately k ¼ 5 endocrinologists per condition. The variation of the summary acceptability
score ranged between �211 ¼ 1:32 in the SD group and �222 ¼ 2:72 in the PB group. These outcome
variances are sums of the cluster level and individual level variances16 and the authors did not report
either the variance per level or the ICC. We therefore assume the worst case of heterogeneity of
variance at both levels, with the same extents of heterogeneity at the two levels. So the ratio between
the largest and smallest variances is l ¼ 2:72=1:32 ¼ 4:3, corresponding to CV=CVmax � 0:60
(see Table 2). Consider now variance scenario 1, which is the worst case. Then, from Figure 1
this extent of heterogeneity gives a relative efficiency of the balanced design equal to RE � 0:90,
meaning that the use of a balanced allocation gave only a small loss of efficiency compared with the
optimal allocation.

4 Sample size computation for a balanced 2� 2 cluster randomized trial

In section 3 we have seen that the popular balanced design is highly efficient as compared to the
optimal design, up to substantial amounts of heterogeneity of the variance. The next question then
becomes how to compute the sample size for a balanced 2� 2 CRT with heterogeneous variance, to
have sufficient power for a prespecified effect size and type I error risk �. This question is addressed
in the present Section. Sample size formulae are available in literature for cluster randomized trials
with two treatment arms and homogeneous variance,3,24 but not for 2� 2 cluster randomized trials
with heterogeneous variance. In this section we show how the sample size computation for the two-
arm design with homogeneous variance can be extended to the 2� 2 design with heterogeneous
variance. We assume heterogeneity of variance at both cluster and individual levels, as this was the
worst case in terms of the RE of the balanced design. At the end of the section we illustrate this
extension again using the statin choice example.

To compute the number of clusters k, with n subjects per cluster, needed in each arm of a two-arm
CRT to achieve a desired power (1-g) and a two-tailed type I error rate � for the treatment effect a
commonly used equation is24:

k ¼ z1�� þ z�=2
� �2

�
ð�2Y1 þ �

2
Y2Þ � 1þ n� 1ð Þ�½ �

n� �1 � �2ð Þ
2

ð8Þ

where z1�� and z�=2 are respectively the 100(1-g)th and 100(1-�/2)th percentiles of the standard
normal distribution corresponding to the desired power (1-g) and a type I error risk �; �1 � �2 is
the unknown treatment effect of interest; �2Y1 ¼ �

2
0ð1Þ þ �

2
"ð1Þ and �2Y2 ¼ �

2
0ð2Þ þ �

2
"ð2Þ are the total

outcome variances in each of the two conditions, where �20 and �2" are the cluster level and
individual level variances and the numbers 1ð Þ and 2ð Þ in their subscript indicate the treatment
arm to which they are related; � ¼ �20ð1Þ=�

2
Yð1Þ ¼ �

2
0ð2Þ=�

2
Yð2Þ due to our assumption of the same

amount of heterogeneity at both levels, which was seen to be the worst case for the balanced
design; n is the number of patients included per cluster and can be optimized by using equation
(5) under homogeneity of variance. Equation (8) gives the number of clusters needed per arm as a
function of the cluster size n, of the ICC �, and of the outcome variance, which may differ between
treatments. Further, it is based on a z-test applied to cluster means, and assumes known variances.
However, with unknown variances, the treatment effect test is a t-test applied to cluster means.3

Under heterogeneity of variance, the degrees of freedom of this test can be computed with the Welch
or Satterthwaite formula,25,26 which we express below as a function of two factors: the number of
clusters k in each condition, and a measure of heterogeneity of the variance across the two

Lemme et al. 585



conditions, l ¼ �2Y2=�
2
Y1, where we assume that �2Y2 is larger than �

2
Y1, and both variances now apply

to the cluster means (but l is the same for individual data as for cluster means under the present
worst case assumption of equal heterogeneity at cluster and individual level):

df ¼ ðk� 1Þ �
ð1þ lÞ2

ð1þ l2Þ
ð9Þ

If the number of clusters is small, say k5 30, the degrees of freedom of the t-statistic are so small
that the percentage points of the t-distribution are noticeably larger than those of the z-distribution,
which gives a loss of power. Hayes and Moulton3 addressed this loss of power by adding one cluster
per treatment arm directly in their sample size equation. We have extended this by computing the
adjusted number of clusters (k�) needed to achieve the desired power and type I error rate, as a
function of the extents of heterogeneity l. We have plotted the difference between the original k as
calculated with equation (8) and the adjusted k� in Figure 3, for two values of the planned number of
clusters in each arm (k ¼ 10 and k ¼ 20), as a function of the heterogeneity of the variance l ranging
from 1 (homogeneity) to 20 (CV=CVmax almost one, see Table 2), assuming a two-tailed type I error
risk � ¼ 0:01 or � ¼ 0:05, and a power 1� �ð Þ ¼ 0:80 or 1� �ð Þ ¼ 0:90.

Figure 3 (left plot) shows that, because of using a t-test instead of a z-test, with k ¼ 10 clusters per
condition and l ¼ 1 (homogeneous variances), regardless of whether the required power is 80% or
90%, one or two extra clusters are needed per condition, for, respectively, � ¼ 0:05 and � ¼ 0:01.
When l4 1 (heterogeneous variance), the number of additional clusters needed per condition
increases with l up to a maximum of approximately four clusters when � ¼ 0:01 and
approximately two clusters when � ¼ 0:05. For a higher initially planned number of clusters per
condition (right plot, k ¼ 20), the number of additional clusters needed is somewhat smaller, as a
larger number of clusters gives more degrees of freedom of the t-distribution (which implies that the
percentage points of the t-distribution approach those of the z-distribution).

Let us now consider how the sample size computation for a two-arm design can be extended to a
2� 2 design, by noting that each of the three treatment contrasts �1 to �3 in equation (1) compares
the average outcome in a pair of conditions with the average outcome in the other pair of conditions.
For instance, if the contrast of interest is �1, then we compare �1 ¼ �11 þ �12ð Þ=2 with
�2 ¼ �21 þ �22ð Þ=2, where �11, �12, �21, and �22 are the outcomes in each cell of the 2� 2
design, as defined in section 2.1. Likewise, each of the other two treatment contrasts (�2 and �3)
comes down to the comparison between two pairs of cells (see lower part of Table 1 for details).
Therefore each contrast in a 2� 2 design can be regarded as a treatment effect in a two-arm design.
In this case, however, the original k in equations (8) and (9) and the adjusted k� following Figure 3,
represent the number of clusters in a pair of conditions rather than the number of clusters in one
treatment arm. Thus, we need one or two (instead of two or four as in the two-arm design) extra
clusters per condition, depending on �.

We now use the statin trial by Jones et al.19 to illustrate the sample size calculation for a 2� 2
CRT. Unfortunately the authors did not report their sample size computation. Therefore, we here
report our sample size calculation based on information on the outcome measure used and its
reported variability. Since the summary acceptability score ranged from 1 to 7, we assume that
for each of the three treatment contrasts �1 to �3 in equation (1), an effect equal to 1 is clinically
relevant (first column of Table 3). Assuming variance scenario 1, �211 ¼ �

2
12 ¼ 1:32 and

�221 ¼ �
2
22 ¼ 2:72 then gives a variance for each pair of conditions being compared as shown in

columns 2 and 3 of Table 3, which translates into an average variance of �2h ¼ 2:122, for
each contrast h ¼ 1, 2, 3, and an effect size d ¼ ð�1 � �2Þ=�h ¼ 0:47, again for each contrast.
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Column 4 of Table 3 shows the number of endocrinologists, each with 5 patients, needed in each pair
of conditions to achieve a type I error rate � ¼ 0:01 and a power 1� �ð Þ ¼ 0:80 and assuming an
ICC � ¼ 0:05, computed using (8) which is based on a z-test. Column 5 of Table 3 shows the extents
of heterogeneity of the variance for each contrast, given by the ratio between the variances in
columns 2 and 3. Column 6 shows the degrees of freedom of a t-test, computed using equation
(9), as a function of the extents of heterogeneity in column 5. The last column of Table 3 shows the
additional number of endocrinologists needed per pair of conditions for a t-test with the degrees of

Figure 3. Additional number of clusters k needed in each arm of a two-arm CRT, for a t-test with dof from the

Welch formula compared to a z-test, a two-tailed type I error �¼ 0.01 and �¼ 0.05 and a power (1-g)¼ 0.90 and

(1-g)¼ 0.80, as a function of l ¼ �2
Y2=�

2
Y1.
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freedom shown in column 6. So, according to the z-test approach in equation (8), k ¼ 25:38
endocrinologists are needed per pair of conditions in the 2� 2 design, that is, 13 endocrinologists
per cell. Next, taking into account the heterogeneity of variance as shown in column 5, an additional
number of k� � kð Þ ¼ 2:40 and k� � kð Þ ¼ 1:69 endocrinologists is needed per pair of conditions to
test �1 respectively to test �2 and �3, see column 7 of Table 3 and see Figure 3. Thus we need 27.78
endocrinologists per pair of conditions to estimate �1 and 27.07 endocrinologists per pair of
conditions to estimate �2 and �3, implying 14 endocrinologists per cell and 56 in total, to have
sufficient power for all three effects of interest. Of course a different effect size or a different extent of
heterogeneity of variance would change these numbers.

5 Discussion

At the design stage of a study a balanced allocation of units, which is optimal for homogeneous
variance, is usually adopted. The outcome variance may however be heterogeneous across the
treatment conditions implying a loss of efficiency (power and precision) of the balanced design as
compared to the optimal design. For 2� 2 CRTs, we therefore derived and plotted the efficiency loss
of a balanced design as a function of the level (cluster, individual, both) and extent of heterogeneity
of the variance, within three heterogeneous variance scenarios. We also provided guidelines for the
additional number of clusters needed in each condition of a balanced 2� 2 CRT to compensate the
efficiency loss due to heterogeneity of variance as compared with homogeneity of variance on which
sample size calculations are usually based.

Our results can be summarized as follows: Firstly, the relative efficiency of the balanced design is
lower when the variance is heterogeneous at both cluster and individual levels, than when it is
heterogeneous at one level only, within each of the three variance scenarios and for any extent of
heterogeneity. Secondly, even when the outcome variance is heterogeneous at both levels, the loss in
efficiency of the balanced design as compared with the optimal design, is less than 10%, up to high
extents of heterogeneity of the variance, that is, up to a largest-to-smallest variance ratio of 4 under
variance scenario 1, and a variance ratio of almost 9 under variance scenarios 2 and 3. Finally, when
a balanced design is adopted and the sample size is calculated based on homogeneous variances, the
number of clusters per condition in the 2� 2 design must be increased with 1 or 2, depending on the
anticipated extent of heterogeneity of variance and on whether the desired type I error rate is
� ¼ 0:05 or � ¼ 0:01. In conclusion, the balanced 2� 2 design is quite robust against
heterogeneity of variance at each design level (cluster, individual), and the loss of efficiency due
to heterogeneity of variance is easily compensated by one or two additional clusters per treatment
condition.

Table 3. Unadjusted (k) and additional ((k*-k)) number of endocrinologists, each with 5 patients, needed in each pair

of conditions of the statin choice trial, assuming a clinically relevant effect size d¼ 0.47 for each treatment effect �1 to

�3, a type I error rate � ¼ 0:01, a power 1� �ð Þ ¼ 0:80, an ICC¼ 0.05, and an extent of heterogeneity of variance l
as shown in column 5.

�2
1 �2

2 k l ¼ �2
2=�

2
1 df ðk� � kÞ

�1 ¼
�11þ�12

2
�

�21þ�22

2
¼ 1

�2
11
þ�2

12

2
¼ 1:32 �2

21
þ�2

22

2
¼ 2:72 25.38 4.31 35.104 2.40

�2 ¼
�11þ�21

2
�

�12þ�22

2
¼ 1

�2
11
þ�2

21

2
¼ 2:12 �2

12
þ�2

22

2
¼ 2:12 25.38 1 48.755 1.69

�3 ¼
�11þ�22

2
�

�12þ�21

2
¼ 1

�2
11
þ�2

22

2
¼ 2:12 �2

12
þ�2

21

2
¼ 2:12 25.38 1 48.755 1.69
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The finding that the balanced design is quite efficient even under heterogeneity of variance is good
news for sample size planning in 2� 2 CRTs. Of course, such planning still requires some knowledge
of the outcome variance at each design level (cluster, individual), since the variance of the treatment
effect strongly depends on that variance, whether homogeneous or heterogeneous (see equation (8)).
Unfortunately, of all published 2� 2 CRT we reviewed, almost none reported this information.
Reporting guidelines for CRTs, such as the CONSORT27 guidelines should perhaps recommend
that such information is reported.

Our work focuses on CRTs with a 2� 2 factorial design, yet our results can also be
applied to CRTs with a two-arm design. For instance, variance scenario 1 has the smallest
two variances and the largest two variances equal (see section 2.3). This can be seen as a
2-arm design with one arm having variance equal to the smallest two, and the other arm
having variance equal to the largest two variances in a 2� 2 design. Further, as explained in
section 4, each contrast in a 2� 2 design compares the average outcome in a pair of conditions
with the average outcome in the other pair of conditions and can be regarded as a treatment
effect in a two-arm design.

The extents of heterogeneity of the outcome variance are measured through the coefficient of
variation, which is defined as the ratio between the standard deviation of the four heterogeneous
outcome variances across the treatment conditions and the average of the four variances, at either
cluster or individual level. This should not be confused with the coefficient of variation of the true
outcome mean between clusters in the same treatment condition, defined as the ratio between the
cluster level variance (�20) and the true outcome mean (�) across all clusters in a treatment condition,
and can be used to compute the sample size for a CRT.3 This gives the same result as our equation
(8) (for details, see equations (7.9) and (7.12) in Hayes and Moulton3).

Our computations are based on the assumption of equal clusters size within the same treatment
condition, which is optimal for estimating treatment effect with maximum precision, given
homogeneity of costs and of the intraclass correlation (see section 2.1). However, due to variation
of the actual size of the organizational units under study (e.g. schools or general practices) and to the
nonresponse and dropout, cluster sizes do vary in practice and this leads to some loss of efficiency.
There is evidence in literature28 that this loss can be approximated by a very simple function of the
coefficient of variation (CV¼mean/standard deviation) of the cluster size and is usually about 10%
or less, which can be compensated by sampling 11% more clusters.

We have restricted our work to three heterogeneous variance scenarios, in order to keep the
number of combinations within reasonable boundaries. Unfortunately, as the outcome variance per
treatment condition is rarely reported, there is lack of empirical evidence from the literature on the
most likely scenarios of heterogeneity of variance. Therefore we have chosen three scenarios that are
plausible in the sense that these follow from the presence of one treatment effect on the outcome
variance (scenario 1), or of two treatment effects on the variance, which can either be equally large
(scenario 2) or not (scenario 3). In scenario 1, the smallest two variances are equal as are the largest
two. In scenario 2 the two middle variances are equal to each other and to the average variance
across all four cells. Therefore, scenario 1 is more extreme than scenario 2. Scenario 3 assumes
equidistant variances and is thus in-between scenario 1 and scenario 2, not only conceptually, but
also in terms of results (not shown here). By releasing the assumption of equidistance other possible
realistic scenarios may be obtained from scenario 3. However, these scenarios are then again in-
between scenario 1 and scenario 2. Similarly, we assumed either heterogeneity of variance at one
level (cluster or individual) only, or the same extent of heterogeneity at both levels within each
scenario. Having a different extent of heterogeneity at each level is in-between the extremes of
heterogeneity at one level and equal extent of heterogeneity at both levels, and can be expected to
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give results similar to those in Figures 1 and 2. In short, the present results cover a wide range of
cases of heterogeneous variance and many other cases are in-between the present ones.

Further, throughout, we used the variance of one treatment effect estimator (c-criterion) as
optimality criterion, and we saw that two other criteria, respectively the sum of the variances of
the three treatment effects (As-criterion), and the sum of the variances of all four fixed effects
(A-criterion), were proportional to our c-criterion for the model in equation (1), thus giving the
same results as the c-criterion. A drawback of the A- and As-criteria, well-known in optimal design
literature, is that they are not generally invariant to transformations of the scale of the linear
predictors. In other words, rescaling one or more predictors may result in different optimal
A- and As-designs. However, this is not a serious problem for the present paper. Each predictor
contrasts one pair of treatment conditions with the other pair. So changing the scaling of one
predictor would need a corresponding rescaling of the other predictors, at least if each contrast is
of equal interest. This would give the same optimal design as before the rescaling.

Two limitations of our work have to be mentioned. First of all, all derivations were based on the
assumption of homogeneity of costs across the four conditions. Ongoing work considers
heterogeneous costs and outcome variances simultaneously. Secondly, our work concerns
continuous outcomes. A logical extension would be to also consider binary outcomes. Previous
studies29,30 suggest that the optimal design results for the mixed linear model in equation (1) also
apply to the mixed logistic models but with two modifications: (1) the outcome variance within each
treatment condition at the individual level �2"rc must be replaced with the expression
�2 ¼ 	ðrcÞ � 1� 	ðrcÞ

� �� ��1
where 	ðrcÞ is the probability of the outcome in the (rc)-th condition in

a 2� 2 design, which is always heterogeneous unless there is no treatment effect at all; (2) for mixed
logistic regression the number of clusters as computed with equations (5) and (8), must be increased
by 10% and up to 25% according to simulations (for details, see Candel and van Breukelen29 and
Moerbeek et al.30). However, the mathematics of the mixed logistic regression model are more
complicated than the mathematics of the mixed linear model. Moreover, closed forms like
equations (2) and (3) give at best a crude approximation, which must be complemented with
simulation studies. Likewise, other categorical data give heterogeneity. For instance, count data
are often modeled with the Poisson distribution. Then the outcome variance equals the mean,
implying that any treatment effect on the mean implies heterogeneity of variance. Therefore,
our work needs to be extended not only to binary data but also to other categorical data
including count data.
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Appendix 1

Computation of the optimal sample size allocation and budget split for the
c-criterion

Using equation (4), express the number of clusters krc in each cell (rc) of the 2� 2 design as a
function of Brc, c, p, and nrc and substitute it into equation (3). Equation (10) is then obtained:

varð�̂hÞ ¼
X
rc

w2
rcðhÞ �

nrc � �
2
0rc þ �

2
"rc

� �
� cþ p� nrcð Þ

Brc � nrc
ð10Þ

where w2
rcðhÞ is the squared weight in the lower part of Table 1 within any cell ðrcÞ of the 2� 2 design.

Equation (10) is the sum of four terms, one per cell (rc) of the 2� 2 design. Each term
is minimized by nrc in equation (5), given Brc, and so this also gives the minimum of the sum

Lemme et al. 591

http://www.consort-statement.org/


in (10). Substitute the optimal nrc given by equation (5) into equation (10). Equation (11) is then
obtained:

varð�̂hÞ ¼
X
rc

w2
rcðhÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� �20rc

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� �2"rc

p� �2
Brc

ð11Þ

As the equation shows, the c-criterion now depends on the costs, on the cluster level and
individual level variance and the available budget in each cell of the 2� 2 design.

Equation (11) is then minimized, to obtain an equation for the optimal budget split across
conditions Brc, as a function of the allocation of the total budget across the four cells of the
2� 2 design, subject to the constraint of a fixed total budget B ¼

P
rc
Brc, using the Lagrange

multiplier. So, we minimize the function:

fðBrc , lÞ ¼
X
rc

w2
rcðhÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� �20rc

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� �2"rc

p� �2
Brc

þ l B�
X
rc

Brc

 !
ð12Þ

where l is the Lagrange multiplier and the term within brackets is zero due to the constraint. This
gives equation (13) for the optimal budget split across conditions:

Brc ¼ B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� �20rc

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� �2"rc

p� �
S

, whereS ¼
Xð22Þ

rc¼ð11Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� �20rc

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� �2"rc

q� �
ð13Þ

After substituting equation (13) into (11), the c-optimality criterion can be rewritten into a
function of total budget, costs and outcome variances only:

varð�̂hÞ ¼
1

16
�

P
rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� �20rc

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� �2"rc

p� �� �2

B
ð14Þ

where the constant term 1/16 is due to the wrcðhÞ values given in Table 1. Apart from this constant,
equation (14) is the numerator of equation (6). The same constant 1/16 also appears in var �̂

� �
for

the balanced design, and so these constants cancel out in equation (6).

Appendix 2

Measuring the amount of heterogeneity of the variance

Define the heterogeneous variance in cell (rc), at either cluster (�20rc) or individual (�
2
"rc) levels as �

2
rc

(i.e. �20rc ¼ �
2
rc and �2"rc ¼ �

2
rc) and the average of the four heterogeneous variances as �2ðavgÞ (i.e.

�2ðavgÞ ¼ �
2
0ðavgÞ and �2ðavgÞ ¼ �

2
"ðavgÞ). The amount of heterogeneity, at either or both levels of the

data structure, can then be measured through the coefficient of variation, expressed as in
equation (6) and which we denote in this section as CV, with CV ¼ CV�2

0
at the cluster level, and

CV ¼ CV�2" at the person level.
Within each heterogeneous variance scenario 1 to 3, assume the below:

(a) the average of the four heterogeneous variances, �2ðavgÞ, remains constant as the coefficient of
variation increases from zero (homogeneity) to its maximum value;

(b) the heterogeneous variances �2rc are equidistant.
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The variance within each cell of the 2� 2 design can be derived from (7), under assumptions (a)
and (b), and expressed as function of the coefficient of variation CV and of the average outcome
variance �2avg. The smallest and largest variances are then expressed as:

�2rc ¼ �
2
ðavgÞ � 1�

CV

CVmax

� �
ð15Þ

where CVmax is the maximum value reached by the coefficient of variation: 1 in scenario (1), 0.71 in

scenario (2) and 0.75 in scenario (3). Assuming that �211 is the smallest variance and �222 is the largest

variance, the minus-sign in the right part of the equation applies to �211 and the plus-sign applies to

�222. Note that assumptions (a) and (b) imply that the intermediate variances are obtained in scenario

(2) as �212 ¼ �
2
21 ¼ �

2
ðavgÞ, and in scenario (3) �212 and �221 obey (15) apart from multiplying the

CV=CVmax ratio by 1/3.
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