64 research outputs found

    Immunotherapy for Alzheimer’s disease: hoops and hurdles

    Get PDF
    Alzheimer’s disease (AD) is the most common form of dementia, afflicting more than 30 million people worldwide. Currently, there is no cure or way to prevent this devastating disease. Extracellular plaques, containing various forms of amyloid-β protein (Aβ), and intracellular neurofibrillary tangles (NFTs), composed of hyper-phosphorylated tau protein, are two major pathological hallmarks of the AD brain. Aggregation, deposition, and N-terminal modification of Aβ protein and tau phosphorylation and aggregation are thought to precede the onset of cognitive decline, which is better correlated with tangle formation and neuron loss. Active and passive vaccines against various forms of Aβ have shown promise in pre-clinical animal models. However, translating these results safely and effectively into humans has been challenging. Recent clinical trials showed little or no cognitive efficacy, possibly due to the fact that the aforementioned neurodegenerative processes most likely pre-existed in the patients well before the start of immunotherapy. Efforts are now underway to treat individuals at risk for AD prior to or in the earliest stages of cognitive decline with the hope of preventing or delaying the onset of the disease. In addition, efforts to immunize against tau and other AD-related targets are underway

    Osteopetrotic (op/op) mice have reduced microglia, no Aβ deposition, and no changes in dopaminergic neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of microglia is a part of the inflammatory response in neurodegenerative diseases but its role in the pathophysiology of these diseases is still unclear. The osteopetrotic (op/op) mouse lacks colony-stimulating factor-1 (CSF-1) and thus has a deficiency in microglia and macrophages. Prior reports have demonstrated that op/op mice deposit amyloid β (Aβ) plaques, similar to those found in Alzheimer's disease. The purpose of these studies was to confirm this and to determine if the lack of CSF-1 affects the development of dopaminergic neurons and the expression of CD200, a known microglial inhibitory protein.</p> <p>Method</p> <p>We examined the central nervous system of op/op mice at 30 days, 60 days and 7 months of age and wildtype littermates at 30 days using immunohistochemistry and histochemistry.</p> <p>Results</p> <p>We found a decrease in the number of microglia in 1 month-old op/op mice compared to wildtype (WT) littermates as measured by CD11b, CD45, CD32/16, CD68, CD204 and F4/80 immunoreactivity. Aβ plaques were not detected, while the number of dopaminergic neurons appeared normal. The expression of CD200 appeared to be normal, but there appeared to be a lower expression in the substantia nigra.</p> <p>Conclusion</p> <p>In contrast to a prior report we did not detect Aβ deposition in the central nervous system of op/op mice at 30 days, 60 days or 7 months of age and there was a normal number of dopaminergic neurons. This indicates that op/op mice may be useful to examine the effects of microglia on neurodegenerative disease progression by breeding them to different transgenic mouse models. In addition, the lack of CSF-1 does not appear to affect CD200 expression by neurons but we did note a decrease in the substantia nigra of op/op and WT mice, suggesting that this may be a mechanism by which microglia control may be attenuated in this specific area during Parkinson's disease.</p

    Increased DJ-1 expression under oxidative stress and in Alzheimer's disease brains

    Get PDF
    Mutations in the DJ-1 gene have been linked to autosomal recessive familial Parkinson's disease. To understand the function of DJ-1, we determined the DJ-1 expression in both zebrafish and post mortem human brains. We found that DJ-1 was expressed early during zebrafish development and throughout adulthood. Knock down (KD) of DJ-1 by injection of morpholino did not cause dramatic morphologic alterations during development, and no loss of dopaminergic neurons was observed in embryos lacking DJ-1. However, DJ-1 KD embryos were more susceptible to programmed cell death. While a slight reduction in staining for islet-1 positive neurons was observed in both DJ-1 KD and H2O2 treated embryos, the number of apoptotic cells was significantly increased in both KD and H2O2 treated embryos. Interestingly, DJ-1 expression was increased in brains of zebrafish under conditions of oxidative stress, indicating that DJ-1 is a part of stress-responsive machinery. Since oxidative stress is one of the major contributors to the development of Alzheimer's disease (AD), we also examined DJ-1 expression in AD brains. Using DJ-1 specific antibodies, we failed to detect a robust staining of DJ-1 in brain tissues from control subjects. However, DJ-1 immunoreactivity was detected in hippocampal pyramidal neurons and astrocytes of AD brains. Therefore, our results strongly suggest that DJ-1 expression is not necessary during zebrafish development but can be induced in zebrafish exposed to oxidative stress and is present in human AD brains

    Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease

    Get PDF
    Autosomal-dominant Alzheimer's disease has provided significant understanding of the pathophysiology of Alzheimer's disease. The present review summarizes clinical, pathological, imaging, biochemical, and molecular studies of autosomal-dominant Alzheimer's disease, highlighting the similarities and differences between the dominantly inherited form of Alzheimer's disease and the more common sporadic form of Alzheimer's disease. Current developments in autosomal-dominant Alzheimer's disease are presented, including the international Dominantly Inherited Alzheimer Network and this network's initiative for clinical trials. Clinical trials in autosomal-dominant Alzheimer's disease may test the amyloid hypothesis, determine the timing of treatment, and lead the way to Alzheimer's disease prevention

    APP processing is regulated by cytoplasmic phosphorylation

    Get PDF
    Amyloid-β peptide (Aβ) aggregate in senile plaque is a key characteristic of Alzheimer's disease (AD). Here, we show that phosphorylation of amyloid precursor protein (APP) on threonine 668 (P-APP) may play a role in APP metabolism. In AD brains, P-APP accumulates in large vesicular structures in afflicted hippocampal pyramidal neurons that costain with antibodies against endosome markers and the β-secretase, BACE1. Western blot analysis reveals increased levels of T668-phosphorylated APP COOH-terminal fragments in hippocampal lysates from many AD but not control subjects. Importantly, P-APP cofractionates with endosome markers and BACE1 in an iodixanol gradient and displays extensive colocalization with BACE1 in rat primary cortical neurons. Furthermore, APP COOH-terminal fragments generated by BACE1 are preferentially phosphorylated on T668 verses those produced by α-secretase. The production of Aβ is significantly reduced when phosphorylation of T668 is either abolished by mutation or inhibited by T668 kinase inhibitors. Together, these results suggest that T668 phosphorylation may facilitate the BACE1 cleavage of APP to increase Aβ generation

    Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo

    Get PDF
    Background: Exosomes, small extracellular vesicles of endosomal origin, have been suggested to be involved in both the metabolism and aggregation of Alzheimer’s disease (AD)-associated amyloid β-protein (Aβ). Despite their ubiquitous presence and the inclusion of components which can potentially interact with Aβ, the role of exosomes in regulating synaptic dysfunction induced by Aβ has not been explored. Results: We here provide in vivo evidence that exosomes derived from N2a cells or human cerebrospinal fluid can abrogate the synaptic-plasticity-disrupting activity of both synthetic and AD brain-derived Aβ. Mechanistically, this effect involves sequestration of synaptotoxic Aβ assemblies by exosomal surface proteins such as PrPC rather than Aβ proteolysis. Conclusions: These data suggest that exosomes can counteract the inhibitory action of Aβ, which contributes to perpetual capability for synaptic plasticity
    • …
    corecore