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Cerebral Amyloid-Beta Protein Accumulation with
Aging in Cotton-Top Tamarins: A Model of Early

Alzheimer’s Disease?

Cynthia A. Lemere,1* Jiwon Oh,1,2* Heather A. Stanish,1,3 Ying Peng,1 Imelda Pepivani,1

Anne M. Fagan,4 Haruyasu Yamaguchi,5 Susan V. Westmoreland,6 and
Keith G. Mansfield6

ABSTRACT

Alzheimer’s disease (AD) is the most common progressive form of dementia in the elderly.
Two major neuropathological hallmarks of AD include cerebral deposition of amyloid-
beta protein (A�) into plaques and blood vessels, and the presence of neurofibrillary tan-
gles in brain. In addition, activated microglia and reactive astrocytes are often associated
with plaques and tangles. Numerous other proteins are associated with plaques in human
AD brain, including Apo E and ubiquitin. The amyloid precursor protein and its shorter
fragment, A�, are homologous between humans and non-human primates. Cerebral A�
deposition has been reported previously for rhesus monkeys, vervets, squirrel monkeys,
marmosets, lemurs, cynomologous monkeys, chimpanzees, and orangutans. Here we re-
port, for the first time, age-related neuropathological changes in cotton-top tamarins (CTT,
Saguinus oedipus), an endangered non-human primate native to the rainforests of Colom-
bia and Costa Rica. Typical lifespan is 13–14 years of age in the wild and 15–20� years in
captivity. We performed detailed immunohistochemical analyses of A� deposition and as-
sociated pathogenesis in archived brain sections from 36 tamarins ranging in age from 6–21
years. A� plaque deposition was observed in 16 of the 20 oldest tamarins (�12 years).
Plaques contained mainly A�42, and in the oldest animals, were associated with reactive
astrocytes, activated microglia, Apo E, and ubiquitin-positive dystrophic neurites, similar
to human plaques. Vascular A� was detected in 14 of the 20 aged tamarins; A�42 preceded
A�40 deposition. Phospho-tau labeled dystrophic neurites and tangles, typically present
in human AD, were absent in the tamarins. In conclusion, tamarins may represent a model
of early AD pathology.
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INTRODUCTION

ALZHEIMER’S DISEASE (AD) is the most com-
mon form of dementia in the elderly, with

prevalence increasing with age. The two major
hallmarks of the disease include extracellular
amyloid-� (A�) deposition into plaques within
the limbic and association cortices in brain and
the presence of neurofibrillary tangles (NFT)
containing hyper-phosphorylated tau and
paired helical filaments (PHF).1 A� is formed
when the precursor protein (APP) is proteolyt-
ically cleaved by �- and �-secretases generat-
ing 40 or 42 amino acid products, known as
A�40 and A�42, respectively.2 In humans, de-
position of A�42-immunoreactive (IR) diffuse
non-fibrillar plaques precedes deposition of
A�40 into more compacted plaques while vas-
cular amyloid is more often A�40-IR.3,4 Neu-
ritic plaques contain extracellular A� sur-
rounded by dystrophic neurites that are often
immunopositive for APP, PHF, phosphory-
lated tau proteins, and/or ubiquitin. Reactive
astrocytes can be found surrounding the pe-
rimeter of the amyloid plaque and activated
microglial cells are often detected within and
surrounding the core.

Although the past several decades of re-
search have dramatically improved our under-
standing of the pathophysiology of AD, there
is still much to be learned about the pathogen-
esis, risk factors, and pathologic mechanisms
underlying this devastating disease. Much of
what we know about the disease has been re-
vealed through the pathologic analysis of post-
mortem human AD brain. In addition, trans-
genic mouse models overexpressing a human
familial AD mutant APP gene and/or prese-
nilin gene (in part responsible for the enzy-
matic cleavage of the C-terminus of A�) have
been useful in the understanding of AD patho-
genesis and experimental testing of novel ther-
apies.5 Wild-type mice do not develop cerebral
A� plaques. In contrast, many non-human pri-
mates naturally develop A� plaques due to the
highly conserved APP sequence between hu-
man and non-human primate APP.6 However,
plaque deposition occurs late in non-human
primates. Cerebral amyloid-beta deposition
has been reported previously for a number of
NHP species, including rhesus monkeys, squir-

rel monkeys, lemurs, marmosets, cynomolo-
gous monkeys, chimpanzees, orangutans, and
vervets.6–19 NFTs are absent in most non-hu-
man primates; however, plaque-associated de-
generating neurites stained by silver or immu-
noreactive with antibodies raised against APP
and phosphorylated neurofilament have been
observed in non-human primates.6–8,11,12,19,20

The cotton-top tamarin (CTT, Saguinus oedi-
pus) is a small (400–500 g) neotropical primate
native to Northwestern Columbia that has been
used in biomedical research since the early
1970s. Tamarins are arboreal primates that live
in extended family units and consume a vari-
ety of fruits, insects, and small mammals as a
staple of their diet. Widespread habitat de-
struction and trapping of animals has led to a
rapid decline in CTT population numbers and
they are listed as a critically endangered species
by the Convention on International Trade in
Endangered Species (CITES). As with other
members of the Callitrichinae, adaptation to
the neotropical environment has led to a num-
ber of important physiological and disease sus-
ceptibility differences from old world primates.
Of particular interest is the restricted diversity
observed at major histocompatibility class I
sites that has been identified in both captive
and wild CTT populations.21,22 In addition,
CTT are normally born as dizygotic twins, and
anastomosis between placental circulations
early in pregnancy leads to stable bone marrow
chimerism between twin sets.23 The roles these
factors play in the CTT’s unique disease sus-
ceptibility pattern is unknown.

In captivity, CTTs routinely live 20 or more
years and eventually succumb to a variety of
conditions, including diabetes mellitus, carci-
noma of the colon, and chronic renal disease.
A form of inflammatory bowel disease mim-
icking ulcerative colitis of man historically has
been widespread in tamarin colonies and is
believed to be multifactorial in etiology.24,25

Genetics, dietary factors, environmental stres-
sors, and bacterial pathogens are all believed to
play a role in disease phenotype.26–29 Affected
animals develop chronic to intermittent diar-
rhea, accompanied by weight loss secondary 
to episodic neutrophilic colitis. This sponta-
neously occurring condition has been used
extensively to investigate novel therapeutic
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strategies including the use of humanized
monoclonal antibodies directed at key proin-
flammatory mediators of colonic inflammation
such as TNF-�.30 Repeated episodes of colitis
predispose aged animals to the development of
colonic adenocarcinoma.26

In this study, we report the first detailed
immunohistochemical analysis of A� deposi-
tion, gliosis, neuritic changes, and plaque-as-
sociated proteins in the brains of new world
cotton-top tamarins ranging in age from 6 to
21 years.

MATERIALS AND METHODS

Primate groups

The autopsied brains of 36 cotton-top
tamarins, ranging in age from 6 to 21 years,
were examined. The archived samples were
provided by the New England Regional Pri-
mate Center. Animals were housed in a large
breeding colony in accordance with Harvard
Medical School’s Institutional Animal Care and
Use Committee.

Tissue preparation

Blocks of frontal cortex, temporal cortex/
hippocampus, and/or occipital cortex from
each tamarin were fixed in neutral buffered for-
malin from 1 to 4 weeks. After fixation, the

brain tissues were dehydrated and embedded
in paraffin. Sections (10 � thick) were cut and
baked at 60°C for 1 h.

Antibodies and histological stains

All antibodies used for immunohistochem-
istry are described in Table 1. Each antibody
was tested on formalin-fixed, paraffin-em-
bedded human AD brain sections in order to
determine optimal staining conditions. A rab-
bit polyclonal antibody, R1282, that recog-
nizes multiple A� forms was used to detect
diffuse and compacted plaques and vascular
amyloid. Carboxy-terminal specific A�42 and
A�40 mouse monoclonal antibodies, MBC-42
and MBC-40, were used to detect A� ending
at residues 42 and 40, respectively. Anti-glial
fibrillary acid protein (GFAP) was used to de-
tect reactive astrocytes while anti-Iba-1 was
used to stain activated microglia. An anti-
APP monoclonal antibody, 8E5, that detects
APP residues 444–592 was used to detect APP
fragments in dystrophic neurites within neu-
ritic plaques. Anti-Apo-E was used to detect
apolipoprotein E in amyloid plaques. Anti-
ubiquitin was used to detect dystrophic neu-
rites in plaques while an anti-phospho-tau
monoclonal antibody, AT8, was used to de-
tect NFTs and neuritic dystrophy. Routine
thioflavin S staining was performed to detect
fibrillar amyloid.

CEREBRAL A� DEPOSITION IN TAMARINS 323

TABLE 1. ANTIBODIES USED FOR IMMUNOHISTOCHEMISTRY

Antibody Target Species Dilution Pretreatment Source

R1282 A� (general) rabbit anti-human 1�1000 formic acid D. Selkoe
(Boston, MA)

MBC-40 A�-40 mouse anti-human 1�1000 formic acid H. Yamaguchi
(Gunma, Japan)

MBC-42 A�-42 mouse anti-human 1�1000 formic acid H. Yamaguchi
GFAP Reactive rabbit anti-human 1�1000 none DAKO

Astrocytes (Carpenteria, CA)
Iba-1 Activated rabbit anti-human 1�2000 microwave WAKO

Microglia (Richmond, VA)
Apo-E Apo-E goat anti-human 1�1000 formic acid, Chemicon

microwave (Temecula, CA)
AT8 NFTs, dystrophic mouse anti-human 1�2500 microwave Innogenetics

neurites (Belgium)
Ubiquitin NFTs, dystrophic rabbit anti-human 1�5000 none East Acres Biologicals

neurites (Southbridge, MA)
22C11 APP mouse anti-human 1�1000 microwave Chemicon

(Temecula, CA)



Immunohistochemistry

Sections were deparaffinized in Histoclear
(National Diagnostics, Atlanta, GA) and rehy-
drated in a graded series of ethanols. Incubat-
ing the sections in 0.3% hydrogen peroxide in
methanol for 5 min at room temperature
quenched endogenous peroxidase activity. Af-
ter washing the sections in water for 5 min, ap-
propriate pretreatments for each primary anti-
body were applied, as described in Table 1.
Microwave pretreatment entailed heating sec-
tions in the microwave at high power in citrate
buffer (Biogenex, San Ramone, CA) until the
buffer came to a boil, at which point the heat
level was reduced in order to provide cyclic boil-
ing for an additional 6 min. The sections were
cooled to room temperature and washed in sev-
eral changes of water. Formic acid pretreatment
consisted of applying 88% formic acid to the sec-
tions for 15 min, followed by two 5 min washes
in water. Following pretreatments, all sections
were blocked for 20 min in 10% goat serum (GS),
10% horse serum (HS), or 5% Carnation dried
non-fat milk in TBS-Tween (10 mM Tris [pH 8],

0.15 M NaCl, 0.05% Tween-20). Sections were in-
cubated with primary antibodies overnight at
4°C. The horseradish peroxidase (HRP) avidin-
biotin complex system (rabbit, mouse, or goat
Elite ABC kits; Vector Laboratories, Burlingame,
CA) and diaminobenzidine (DAB, Sigma Im-
munochemicals, St. Louis, MO) were used to vi-
sualize bound antibodies. In order to reduce
run-to-run variability, sections from all tamarins
were stained with a given antibody simultane-
ously. Sections were then counterstained with
hematoxylin, dehydrated, cleared in Histoclear
(National Diagnostics), and cover slipped with
Permount (Fisher Scientific, Pittsburgh, PA). As
a negative control, primary antibody was omit-
ted from a single section during immunostain-
ing with each antibody, consistently resulting in
a lack of immunoreactivity.

Quantification of serum A� by ELISA

Frozen aliquots of serum were obtained for
27 of the 36 tamarins. Serum levels of A�1-40
and A�1-42 were quantified by sandwich
ELISA at Washington University School of
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FIG. 1. Human AD neuropathology. Immunohistochemistry was used to detect A� deposition and accompanying
neuropathological changes in formal-fixed paraffin sections from the frontal cortex of an 80-year-old female AD pa-
tient. Abundant diffuse and compacted plaques were detected with anti-A�42 (a), while only a subset of plaques,
mostly compacted, was labeled with anti-A�40 (b). A general A� antibody, R1282, labeled a subset of A�42-im-
munoreactive plaques (e). Neuritic plaques were identified by labeling of dystrophic neurites with anti-APP 8E5 (c).
Activated microglia (c) and reactive astrocytes (f) were increased in areas containing compacted plaques. Scale, 100
�m.



Medicine using C-terminal specific antibodies
2G3 and 21F12, respectively, to capture and a
biotinylated N-terminal specific antibody, 3D6,
to detect, as described.31 All samples were run
in triplicate and compared with two serum
samples from human controls.

RESULTS

Human AD pathology

As shown in Figure 1, human AD is charac-
terized by the presence of extracellular A�
plaques (Fig. 1a, b, e) that often contain APP-
positive dystrophic neurites (Fig. 1c) and are
surrounded by reactive astrocytes (Fig. 1f) and
activated microglia (Fig. 1d). A�42 deposition

is found in both diffuse, non-fibrillar plaques
and compacted, fibrillar plaques and is more
abundant than A�40, found primarily in a sub-
set of compacted plaques and vascular de-
posits. In addition, NFTs are present and im-
munoreactive with antibodies against certain
phosphorylated forms of tau and neurofila-
ment proteins and ubiquitin (data not shown).
Thioflavin S labels fibrillar amyloid in com-
pacted plaques, meningeal and parenchymal
blood vessels, and NFTs (data not shown).

Cerebral A� deposition in aged tamarins

Cortical brain tissues from 36 tamarins (ages
6–21 years; 21 females, 15 males) were exam-
ined by immunohistochemistry for AD pathol-
ogy, as illustrated in Table 2. While both frontal
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TABLE 2. IMMUNOREACTIVITY IN TAMARIN CORTEX

Tamarin ID Age (yr) Gender A�: R1282 A�42 A�40 GFAP Iba-1 Apo E Ubiquitin

161-96 6.3 F – – – – – – –
29-96 6.53 F – – – – – – –
288-93 6.6 M – – – – – – –
83-96 6.7 M – – – – – – –
25-92 6.9 M – – – – – – –
301-94 7.7 F – – – – – – –
307-91 7.9 F – – – – – – –
462-92 8.1 F – – – – – – –
59-93 8.4 M – – – – – – –
328-90 8.7 F – – – – – – –
350-92 8.8 M – – – – – – –
136-92 9.4 M – – – – – – –
234-90 9.8 M – – – – – – –
*12-90 10.5 M – – – – – – –
106-87 11.2 M – – – – – – –
15-88 11.3 M – – – – – – –
499-91 12.4 F �bv �bv – – – �bv –
496-92 13.7 F – �pl – – – – –
202-89 14.5 F �bv �bv – – – �bv –
295-92 14.5 M �pl �pl – – – – –
297-84 15.6 F �pl; �bv �pl; �bv – – – �pl; �bv –
102-83 15.7 F – �pl – – – – –
382-82 16.2 M �pl �pl – – � – –
402-87 16.2 F �bv �bv – – – – –
60-88 16.6 F �pl; �bv �pl; �bv �pl � � – –
151-88 16.9 F �pl �pl – – – – –
245-86 16.9 F �pl; �bv �pl; �bv – – – �bv –
383-85 16.9 F �bv �bv – – � – –
271-88 17.3 F �pl �pl – � � – –
234-84 17.4 F �pl; �bv �pl; �bv – – � – –
62-85 17.4 F �pl �pl; �bv – � � �bv –
29-81 19.5 M �pl; �bv �pl; �bv – � � – �
160-80 19.60 M �pl; �bv �pl; �bv �bv � � �pl –
159-80 20.2 F �pl; �bv �pl; �bv �bv � � �pl; �bv �
203-84 20.8 M �pl; �bv �pl; �bv �pl; �bv � � �pl; �bv �
87-79 20.9 F �pl; �bv �pl; �bv �bv � � �pl; �bv �

F, female; M, male; bv, blood vessels; pl, plaques.



and temporal cortical samples were available
for most of the tamarins, occipital samples were
obtained from a subset of tamarins. Cerebral
A� deposition was observed first in blood ves-
sels starting at 12 years of age (Fig. 2a) and then
in plaques beginning at 13 years of age. Gen-
der did not influence the age of onset of A� de-
position (Table 2). While some diffuse, granu-
lar A� deposits were observed (Fig. 2b), many
plaques were rounded and appeared com-
pacted (Fig. 2c-f). The number of plaques was
much greater in the oldest animals (�19 yrs).
In general, A� plaque and vascular deposits oc-
curred first in frontal and temporal cortices;
however, vascular A� deposition was also
present and much more abundant in occipital
cortex.

Plaques were detected in hippocampus in
only the oldest animals and in very low num-
bers. Therefore, most of the data presented here
pertains to cortical regions of tamarin brain.
Thioflavin S labeled fibrillar A� in a subset of
blood vessels and compacted plaques (data not
shown).

A�42 deposition precedes A�40 deposition in
plaques and vascular amyloid in aged tamarins

Sensitive C-terminal-specific antibodies
were used to detect A� ending at residues 42
(A�42) and 40 (A�40) in tamarin brain. Simi-
lar to human brain, A�42-positive plaques
were observed earlier than A�40-positive
plaques in tamarin brains (Table 2 and Fig. 3).
A�42-positive plaques were observed in 16 of
20 tamarins over 12 years of age. Both diffuse
(Fig. 3b) and compacted plaques (Fig. 3a and
c) were immunoreactive with the A�42 mono-
clonal antibody. In contrast, A�40-positive
plaques were observed only in two tamarins
(ages 16.6 and 20.8 years), and were few in
number and found only in compacted plaques
(data not shown).

As illustrated in Table 2 and Figure 4, vas-
cular A� deposition was comprised mainly of
A�42, with A�40-immunoreactive blood ves-
sels occurring only in the four oldest animals
(ages 19.6–20.9 years) and predominantly in oc-
cipital cortex. Strong A�42-positive vascular
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FIG. 2. A� Immunoreactivity in frontal cortex of tamarin. A general A� antibody, R1282, was used to immunostain
tamarin frontal cortex sections. Vascular A� deposits (*) were observed as early as 12 years of age (a) and increased
in abundance with aging (f). Diffuse granular plaques (b) are seen in the younger of the aged animals, whereas more
rounded, compacted plaques as well as diffuse plaques were observed in the older animals (c–f, arrows). Scale, 50
�m.



amyloid was observed at 12.4 years of age 
in frontal and occipital cortices in the absence
of any A�40 immunoreactivity (Fig. 4a and 
d). A�42 deposition was detected in lepto-
meningeal (Fig. 4a and b) as well as parenchy-
mal blood vessels in aged tamarins (Fig. 4c).
Thioflavin S labeled most of the vascular amy-
loid (data not shown), indicating the presence
of A� fibrils.

Plaque-associated pathology in tamarin brain

Gliosis, Apo E, and ubiquitin were examined
by immunohistochemistry in tamarin brain
sections. Anti-GFAP immunolabeled astro-
cytes in all tamarin brain sections; however,
plaque-associated reactive astrocytes were de-
tected in cortex in eight aged tamarins
(16.6–20.9 years; Table 2) (data not shown in
image). Plaque-associated activated microglia
were detected in cortex by Iba-1 immunolabel-
ing in 11 aged tamarin brains (16.2–20.9 years;
Table 2 and Fig. 5a and b). Gliosis was also
prominent around blood vessels containing
amyloid (data not shown). Apo E, a plaque-as-

sociated protein found in human AD brain, was
detected in amyloid-laden blood vessels as
early as 12.4 years of age and in subset of cere-
bral plaques beginning at 15.6 years of age in
tamarin cortex (Table 2 and Fig. 5b and c).
However, many A� plaques did not have any
Apo E immunoreactivity. Lastly, plaque-asso-
ciated dystrophic neurites were detected in cor-
tex using an anti-ubiquitin antibody in four of
five of the oldest animals (Table 2 and Fig. 5d
and f) although no neuritic plaques were ob-
served using anti-APP (8E5) and anti-phospho-
tau (AT8) antibodies (data not shown).

Serum A� levels in tamarins

Stored frozen serum samples were obtained
for 27 (ages 6.3–20.8 years) of the 36 tamarins
examined neuropathologically in this study.
All samples were subjected to A�1–42 and
A�1–40 ELISAs. In general, serum A�40 and
A�42 levels were markedly lower in all 27
tamarins compared to two control human
serum samples. A�40 levels averaged 17.2
pg/mL (� 29.8 SD) for tamarins and 391.5
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FIG. 3. A�42 precedes A�40 in cerebral plaques in tamarins. Monoclonal antibodies recognizing the free-carboxyl
terminus of A� ending at residue 42 or 40 were used to immunostain formalin-fixed, paraffin brain sections of tamarin.
A�42 immunoreactivity (a–c) was observed earlier and in much greater quantity than A�40 immunoreactivity (d–f)
in plaques in adjacent serial sections. A�42 labeling was found in diffuse, granular deposits (b) as well as in com-
pacted plaques (a, c). A�40 immunoreactivity was mostly absent from the adjacent sections, except for two small dots
in the center (f). F ctx, frontal cortex; T ctx, temporal cortex. Scale bar, 100 �m.



pg/mL (� 31.6 SD) for humans. A�42 levels
averaged 15.0 pg/mL (� 11.8 SD) for tamarins
and 43.7 pg/mL (� 39.2 SD) for humans. In-
terestingly, the levels of A�40 and A�42 were
roughly equal in tamarin serum while A�40
was approximately 9-fold higher than A�42 in
human serum. A� levels in serum did not cor-
relate with A� deposition in plaques or blood
vessels in tamarin brain.

Lack of correlation between A� deposition and
colitis in tamarins

As mentioned earlier, cotton-top tamarins
frequently develop ulcerative colitis. Because
colitis is an inflammatory-based illness, we
asked whether animals with colitis were more
likely to develop A� deposition. Eleven of the
16 tamarins under 12 years of age were re-
ported to have colitis at the time of death; cere-
bral A� deposition was absent in these animals.
Ten of 20 tamarins 12 years of age or older had
colitis but all 20 of these animals displayed
some cerebral A� immunoreactivy in plaques,
blood vessels, or both. Thus, there was no cor-

relation between colitis and the amount of A�
deposition in animals 12 years of age or older.

DISCUSSION

Animal models, such as cotton-top tamarins,
that naturally deposit A� into plaques and
blood vessels in brain provide a useful tool for
understanding the pathogenesis of AD, and
may help to identify novel biomarkers for early
diagnosis. In addition, these models represent
valuable resources for preclinical testing of
therapeutic strategies for AD, although such
testing would preclude terminal endpoints in
tamarins as they are an endangered species.
Here, we show that with aging (beginning
around 12 years of age), tamarins develop both
vascular amyloid and cortical A� plaques, both
of which contain predominantly A�42 protein.
Diffuse and compacted plaques were observed
in frontal, temporal, and occipital cortices;
however only the more compacted plaques
were associated with gliosis, Apo E, and ubiq-
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FIG. 4. A�42 precedes A�40 in cerebral blood vessels in tamarins. Monoclonal antibodies recognizing the free-car-
boxyl terminus of A� ending at residue 42 or 40 were used to immunostain formalin-fixed, paraffin brain sections of
tamarin. A�42-immunoreactive blood vessels were observed earlier (a) and in much greater quantity (a–c) than A�40-
immunoreactive blood vessels (d–f) in adjacent serial sections. A� deposition occurred in both leptomeningeal (b)
and parenchymal blood vessels, although in both types of vessels, A�42 was the dominant species at all ages. O ctx,
occipital cortex. Scale bar (e), 100 �m; scale bar (f) for c and f only, 100 �m.



uitin-positive dystrophic neurites. Phospho-
tau-positive and APP-positive neuritic plaques
and NFTs were not observed in any of the 36
tamarin brains examined in this study. A� was
detectable in low levels in serum but did not
correlate with A� deposition in brain. Colitis,
a common inflammatory affliction in tamarins,
did not appear to accelerate or increase A�
pathology in tamarin brain.

Although cerebral A� deposition was noted
in a few canine species as early as 1956,32 it was
not until the 1970s that the observation of cere-
bral A� deposition came to include various

non-human primate species.33 Although canine
species were found to have A� plaques in brain
parenchyma, few of the plaques were found 
to progress to characteristic full-blown AD
pathology as that seen in humans.34 More re-
cently, the development of AD-like transgenic
mouse models has allowed for many advances
in the understanding of AD pathophysiology
and has concurrently provided a convenient
model upon which to test therapies.5 However,
mice do not naturally develop A� pathology,
possibly due to a three amino acid difference
in the first 15 residues of human versus murine
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FIG. 5. Plaque-associated pathology in tamarin brain. Cortical sections were immunostained using antibodies to mi-
croglia (Iba-1), apolipoprotein E (Apo E, a cholesterol transport protein thought to play a role in A� deposition), and
ubiquitin. Plaque-associated activated microglia were occasionally observed (a and b) in 11 of the 20 oldest animals
and increased with age. Apo E staining co-localized with A� in a subset of cortical plaques (c and d) and/or blood
vessels in 9 of the 20 oldest tamarins. Ubiquitin-positive dystrophic neurites were observed infrequently in A� plaques
(e and f), and only in four of the five oldest animals (�19 years). Scale bar (a–d), 50 �m; scale bar (e and f), 100 �m.



A�. Because of substantial genetic, biochemi-
cal, and physiological differences between ro-
dents and humans, it is not surprising that the
use of murine models for the experimental test-
ing of novel therapies has its limitations, as was
exemplified when an AD vaccine that was
clearly efficacious in clearing cerebral A� de-
posits in mouse models caused serious com-
plications (aseptic meningoencephalitis) in a
Phase II clinical trial in humans.35 Hence, it is
apparent that these two animal models are use-
ful but each has its own limitations.

Non-human primates provide a more nat-
ural model of AD-like pathology, as they de-
velop A� plaques and cerebrovascular amyloid
pathology with aging, and have a highly con-
served APP sequence compared to humans.6 A
body of accumulated research indicates that the
neuropathological consequences of aging in
non-human primates is almost indistinguish-
able from what occurs in humans.36 Further-
more, due to their vast repertoire of behavioral
habits, non-human primates provide a useful
model to document and compare the behav-
ioral effects of various therapies. Amyloid de-
position in both cerebral parenchyma and vas-
culature have previously been observed in
various primate species, including squirrel
monkeys, marmosets, lemurs, rhesus monkeys,
vervets, cynomolgus monkeys, chimpanzees,
and orangutans.6–20 Of these, the rhesus mon-
key and squirrel monkey have been among the
most extensively studied thus far. C-terminal
specific antibodies have been used in many of
these species in order to elucidate the type and
distribution of A� deposition. Our data con-
firm the prevalence of A�42 in plaques and
blood vessels in tamarins, similar to humans
and some published data in non-human pri-
mates,13 with the exception that in some non-
human primate species, plaque and vascular
amyloid consist mainly of A�40.15 In part, this
may be due to the age of the animals investi-
gated (A�42 is deposited earlier than A�40 in
tamarins) and the antibodies and pretreat-
ments used in the different studies. The pres-
ence of neuritic dystrophy, reactive astrocyto-
sis, activated microglia, as well as various
plaque-associated proteins such as � 1-ACT,
Apo-E, and heparin sulfate proteoglycan have
also been observed in various primate species.

Serum A� levels were much lower in
tamarins than in humans. It is possible that the
A� antibodies used in the ELISA are less effi-
cient at detecting tamarin A� than human A�
but this seems unlikely as similar A� antibod-
ies were able to detect extracellular A� in
tamarin brain tissue. It is also possible that A�
is bound to another protein or is in a particu-
lar conformation in tamarin serum, making it
less accessible to the A� antibodies. Further
studies are underway to address these possi-
bilities. In addition, it is unclear why A�40 and
A�42 levels are similar in tamarins while A�40
is much higher than A�42 in humans. It is pos-
sible that this finding may be relevant to the
greater abundance of A�42 in vascular A� in
tamarins compared to humans.

In summary, we have described naturally oc-
curring A� pathology in the brains of aged cot-
ton-top tamarins. While A� deposition, partic-
ularly A�42, was present in plaques and blood
vessels in the cortex of numerous tamarins af-
ter 12 years of age, more advanced pathologi-
cal changes, such as the presence of A�40 im-
munoreactivity, gliosis, Apo E deposition, and
neuritic dystrophy, was evident only in the old-
est animals. Neurofibrillary tangles were not
observed using one phospho-tau antibody,
AT8. Our observations indicate that cotton-top
tamarins develop early AD-like pathology sim-
ilar to that seen in humans, and would thus be
a useful model of early AD pathology and pos-
sibly biomarkers for early diagnosis.
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