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Abstract

Galactic Cosmic Radiation consisting of high-energy, high-charged (HZE) particles poses a significant threat to future
astronauts in deep space. Aside from cancer, concerns have been raised about late degenerative risks, including effects on
the brain. In this study we examined the effects of 56Fe particle irradiation in an APP/PS1 mouse model of Alzheimer’s
disease (AD). We demonstrated 6 months after exposure to 10 and 100 cGy 56Fe radiation at 1 GeV/m, that APP/PS1 mice
show decreased cognitive abilities measured by contextual fear conditioning and novel object recognition tests.
Furthermore, in male mice we saw acceleration of Ab plaque pathology using Congo red and 6E10 staining, which was
further confirmed by ELISA measures of Ab isoforms. Increases were not due to higher levels of amyloid precursor protein
(APP) or increased cleavage as measured by levels of the b C-terminal fragment of APP. Additionally, we saw no change in
microglial activation levels judging by CD68 and Iba-1 immunoreactivities in and around Ab plaques or insulin degrading
enzyme, which has been shown to degrade Ab. However, immunohistochemical analysis of ICAM-1 showed evidence of
endothelial activation after 100 cGy irradiation in male mice, suggesting possible alterations in Ab trafficking through the
blood brain barrier as a possible cause of plaque increase. Overall, our results show for the first time that HZE particle
radiation can increase Ab plaque pathology in an APP/PS1 mouse model of AD.
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Introduction

After more than 50 years of manned space exploration, plans

are underway to return to the moon and explore other locations

beyond Earth’s protective magnetic field, including asteroids and

Mars. This does not come without significant risk. In particular,

a major risk factor for human health in deep space is radiation.

The galactic environment is dominated by high levels of protons

arising from solar flares, and low, but continuous levels of Galactic

Cosmic Radiation (GCR) [1]. GCR is made of high-energy, high-

charged (HZE) particles that contain a variety of different

elements, including 56Fe particles [2]. Radiation-induced late

degenerative changes represent a potential risk for future

astronauts [1,3]. A significant focus of NASA’s efforts to assess

radiation risk has centered on possible late effects in the central

nervous system (CNS). For example, similar to more well studied

terrestrial radiation such as c rays [4], 56Fe particle radiation has

been documented to cause neuroinflammation [5], a clear in-

dicator of CNS damage [6]. Furthermore, even at very low doses,
56Fe particle radiation can result in neurogenesis defects and

cognitive impairment [5,7]. Given that there is a high probability

of HZE particles hitting CNS neurons during a space mission [2],

concerns have been raised regarding the potential effects of space

radiation on promoting neurodegenerative disorders, including

Alzheimer’s disease (AD), which will afflict as many as 45% of

individuals who survive past the age of 85 [8].

AD is characterized by a progressive cognitive decline over

several years [9]. This cognitive decline is thought in part, to result

from an ongoing chronic neuroinflammatory process [10]. One of

the key players in neuroinflammation and one of the two major

histopathological hallmarks of the disease is accumulation of

amyloid beta (Ab) into extracellular, dense fibril plaques [11].

Monitoring plaque progression in vivo has been used to gauge

disease severity [12] and has recently been approved as a di-

agnostic tool for human imaging studies [13]. Since the in-

flammatory environment appears to play a role in driving disease

progression [11], any inflammatory changes can alter AD

pathology. We, as well as other groups, have shown that exposure

of the CNS to various cytokines [14–16] or bacterial components

[17] can drastically alter plaque pathology depending on the

specific stimulus provided. Additionally, there is accumulating

evidence that peripheral inflammatory stimuli can also influence
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Ab accumulation [18,19]. This demonstrates that AD pathology is

dynamic and sensitive to CNS environmental changes. Inflam-

mation is also associated with neurovascular dysfunction. Further-

more, this dysfunction has been linked to impaired transport of Ab
out of the brain, resulting in increased accumulation and disease

progression [20]. Indeed, decreased blood brain barrier (BBB)

transport of Ab has been implicated in mouse and human studies

[21]. Interestingly, radiation has also been clearly documented to

cause BBB break down and dysfunction [22].

The potential disease-altering effects of GCR prompted us to

examine if HZE radiation influences AD pathological progression

using an APP/PS1 mouse model that shows age-associated

accumulation of Ab plaques and cognitive dysfunction [23,24].

We discovered that 56Fe particle radiation resulted in cognitive

impairment and increased Ab plaque pathology at cumulative

doses similar to those that astronauts might be exposed to on

exploratory missions to deep space and Mars [3].

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. Animal

protocols were reviewed and approved by the University of

Rochester (Protocol Number: 2008–38) and Brookhaven National

Laboratory’s (BNL) (Protocol Number: 442) Institutional Animal

Care and Use Committees.

Animals
Twenty-nine male and twenty female APPswe/PSEN1dE9

(APP/PS1) mice (stock no. 004462) on a mixed C3H/HeJ and

C57BL/6 background were purchased from The Jackson Labo-

ratory at approximately 3 months of age. Animals were shipped to

BNL and allowed to acclimate. Mice were housed five per cage in

temperature (23 6 3uC) and light (12:12 light:dark) controlled

rooms with free access to chow and water. After radiation

exposure at 3.5 months of age, animals were shipped back to the

University of Rochester until euthanasia. Mice were routinely

monitored for health issues and had no observable problems at the

time of euthanasia. Male mice were euthanized at 9.5 months of

age while female mice were euthanized at 7 months due to

concerns raised regarding early death.

Irradiation
Radiation exposures were performed at NASA’s Space Radi-

ation Laboratory at BNL. Animals were loaded into ventilated

50 mL polystyrene conical tubes and irradiated, 8 at a time, using

a foam tube holder positioned at the center of a 20620 cm beam

of iron ions accelerated to 1 GeV/m at a dose rate ranging from

0.1–1 Gy/min. Male mice received total doses of either 10 cGy or

100 cGy. Female mice received only a 100 cGy dose. Control

mice were similarly placed in tubes and sham irradiated.

Behavioral Testing
Memory was tested using two different paradigms. The first was

contextual fear conditioning, which tests the ability of the subject

to recognize an environment associated with an adverse stimulus

(foot shock). Fear conditioning was set up, performed, and

analyzed as previously described [25]. In brief, mice were allowed

to explore a novel chamber for 3 minutes, then 15 s of white noise

(80 dB) was presented and co-terminated with a 2 s, 0.7 mA foot

shock. This noise-shock paring was repeated twice for a total of 3

shocks, using an interval of 30 s between shocks. Twenty-four

hours later, mice were placed back into the same chamber and

freezing was measured for 5 min. Four hours later, mice were

placed in a novel context for 3 min then re-exposed to the white

noise (cued tone response) for 3 min and freezing was analyzed.

Novel object recognition was preformed with assistance from the

University of Rochester Behavioral Science Facility Core. This test

was performed and scored as described previously [26]. Our

learning trial time was 10 minutes and the testing trial time was 5

minutes with a one hour delay between each trial. The entire first

10 min session was scored while only the first 2 min of the 2nd test

session was scored. A recognition index (RI) for time spent with the

novel object was calculated based on the proportion of total time

spent with the novel object.

Tissue Collection
Animals were anesthetized and perfused with saline as pre-

viously described [16]. The brains were then harvested and the

hemispheres were bisected with a razor blade. The right half was

fixed in ice cold 4% paraformaldehyde (PFA) while the left half

was snap-frozen in isopentane and stored at 280uC until used for

ELISA and Western blot analysis. The fixed tissue remained

overnight in 4% PFA at 4uC and was then transferred to 30%

sucrose until equilibrated.

Immunohistochemistry (IHC)
Brains were sectioned at 30 mm on a sliding knife microtome

with a 225uC freezing stage. Sections were stored in cryoprotec-

tant at 220uC until processing. Antibody staining was visualized

using either biotinylated secondary antibodies, avidin-biotin

complex (Elite), and a 3,3-diaminobenxadine (DAB) substrate kit

(Vector Laboratories) or, immunofluorescent secondary antibodies

bound to Alexa fluorophores (Invitrogen) at a dilution of 1:500.

Primary antibodies used were mouse anti-6E10 (Covance, 1:1000),

rabbit anti-GFAP (DAKO 1:1000), rabbit anti-Iba-1 (Wako,

1:2000), rabbit anti-CD68 (AbD Serotec, 1:500), and Armenian

hamster anti-ICAM (Thermo Scientific, 1:1000). Biotinylated

secondary antibodies against their proper species (Jackson

Laboratory) were used at 1:1000. For Congo red staining, a kit

from Sigma-Aldrich was used.

Quantification of Amyloid Plaque Load and Glial
Activation
Brains sections were viewed with an Axioplan 2i light

microscope (Zeiss). For plaque area, a 5x lens was used. Multiple

images were taken of a single section to obtain pictures of the

whole cortex and hippocampus. Images were merged in Photo-

shop and subjected to threshold analysis using the max entropy

threshold algorithm in NIH ImageJ (V1.46, http://rsbweb.nih.

gov/ij/). The percent area occupied by 6E10 or Congo red of the

cortex and hippocampus was calculated and analyzed. In addition

to the percent area of 6E10, the total number and average size of

6E10 positive plaques was obtained using this threshold algorithm.

The percent area occupied by GFAP was calculated for cortex

only. Values obtained for male mice were analyzed with a one-way

ANOVA followed by Bonferroni post test comparing the different

doses. Values for female mice were analyzed with a Student’s t-

test.

Microglial activation was analyzed by capturing images at 40x

magnification. Images were taken of Congo red stained dense

plaques. The images were transferred to NIH ImageJ and the

three color channels comprising CD68, Iba-1, and Congo red

were separated and viewed individually. A 500 pixel total area

circle was placed in the center of each plaque. In total, 6 Congo-
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red-positive plaques in each of two hippocampal sections were

analyzed and averaged together for each mouse. Using the max

entropy threshold algorithm we calculated the percent area inside

the 500 pixel circle occupied by CD68, Iba1, and Congo red.

Prism v5 (Graphpad Software) was used for all statistical analyses.

A value of p , 0.05 was considered significant.

Protein Quantification
Western blot and ELISA protein samples were prepared as

previously described [16,27]. Briefly, half brains were homoge-

nized then sonicated in 1 mL of T-per (Pierce) and protease

inhibitor cocktail set I (Calbiochem). 100 mL of homogenized

sample was removed and stored at 280uC for Western blot.

Remaining samples were centrifuged at 100,000g for 60 minutes.

Supernatants (soluble fraction) were removed and the pellet was

resuspended in 150 mg/mL Guanidinium HCL pH 8.0 followed

by recentrifugation at 100,000g to generate an insoluble fraction.

Soluble and insoluble Ab isoforms were assayed using Invitrogen

ELISA kits for Ab42 and Ab40 (#KHB3544 and #KHB3841,

respectively). T-per soluble fractions were also used for TNFa
ELISA (#KMC3011). Protein concentrations for Western blot

samples were measured with a Micro BCA protein assay (Thermo

Scientific). 15 mg of protein was subjected to SDS-PAGE,

transferred to polyvinylidene difluoride, and probed with anti-

bodies specific against the following substrates: Mouse anti-

Amyloid Precursor Protein (Covance, 1:1000), Rabbit anti-b-
CTF (Sigma, 1:1000), Rabbit anti-IDE (Calbiochem 1:1000),

Rabbit anti-LRP1 (Epitomics, 1:10,000), and a-tubulin (Calbio-

chem, 1:5000). Only the male 0 cGy and 100 cGy samples were

used for Western blots.

Results

To assess the effect of iron galactic cosmic radiation on memory

and cognition two separate tests were employed prior to tissue

harvest at 9.5 mo for males and 7 mo for females. To assess

hippocampal-dependent memory, the first test used was contextual

fear conditioning (Fig. 1A). We found an overall significant

difference in freezing behavior as measured by one-way ANOVA

in the male group [F(2,32) = 5.122, p = .0118] and post-hoc

analysis revealed a significant decrease in freezing behavior

between the 0 cGy and 100 cGy conditions. In female mice at 7

months of age, there was a trend towards increased freezing after

100 cGy irradiation (p= .0561) (Fig. 1A). Radiation did not have

a significant effect on freezing relative to a novel environment or

a cued tone response in either sex (Fig. 1B). The second cognitive

test used was a novel object recognition paradigm, which depends

on multiple areas of the brain. One-way ANOVA revealed

a significant change in the males [F (2,34) = 11.99, p,.0001] and

post-hoc showed a decrease in exploratory time spent with the

novel object for both the 10 cGy and 100 cGy irradiated male

groups (Fig. 1C). A Student’s t-test showed significant loss of novel

object recognition in the female group exposed to 100 cGy

(p,.0001).

The radiation induced defects in learning and memory

prompted us to examine if there were any alterations of Ab
pathology. Figure 2 shows results from two different kinds of

amyloid stains. Congo red was used to stain dense fibrillar plaques

(Fig. 2A, B) and 6E10, which recognizes an epitope within amino

acid residues 1–16 of Ab, labels fibrillar and non-fibrillar Ab
(Fig. 2C, D). At 9.5 mo of age, exposure of male mice to 100 cGy

of radiation was sufficient to cause a significant increase of 38.0%

in Congo red- [F(2,33) = 4.839, p = .014] (Fig. 2B) and a 53.8%

increase in 6E10- [F(2,32) = 8.132, p = .0014) (Fig. 2D) labeled

plaque burden (percent area). The 7 mo-old females did not show

any significant difference in Congo red (p = .1011) or 6E10

(p = .1585). Using 6E10 labeling, male mice exposed to 56Fe

particle radiation also showed a significant increase of 300 6 56 to

447 6 147 (mean 6 SD, p= .0044) (Fig. 2E) in the average

number of plaques after 100 cGy irradiation. Additionally, there

was a trend towards larger plaque size (587 6 50 to 628 6 51

mm2, mean 6 SD, p= .052) (Fig. 2F) in the males irradiated with

100 cGy compared to controls (0 cGy). Females did not show any

changes in plaque size or number with radiation.

To strengthen our histology data and determine whether

different forms of Ab were altered after radiation, we prepared

soluble and insoluble fractions of homogenized hemibrains and

used ELISAs specific for Ab peptides with C-terminals of 40 or 42

(Fig. 3). For the soluble fraction, there was a significant 35.9%

increase in Ab40 levels with 100 cGy radiation in male mice

compared to non-irradiated controls by one-way ANOVA

[F(2,34) = 4.332 p= .0211] (Fig. 3A). Moreover, male mice showed

significant 14.8% and 10.2% increases in concentrations of Ab42
in the insoluble fraction at both 10 and 100 cGy, respectively

[F(2,36) = 6.253 p= .0047] (Fig. 3D), and a trend (p = .09) toward

increased levels of insoluble Ab40 after irradiation (Fig. 3C). No

statistically significant effects were observed for Ab40 or Ab42
concentrations in samples prepared from female mice.

The increases found in the insoluble fraction (Fig. 3D) confirm

our IHC results of Ab accumulation in the males (Fig. 2). The

increase in different Ab isoforms suggests possible changes in the

production of the amyloid precursor protein (APP) or increased

cleavage of APP as measured by the b-secretase cleavage product

(b-CTF). To determine if radiation influenced either of these

processes, we measured levels of APP and b-CTF by Western blot

in male mice exposed to 100 cGy 56Fe particles. As shown in

Figures 3E and 3F, no changes in levels of these two species were

observed relative to unirradiated controls. This suggests that the

observed increases in Ab were not due to increased APP

production or processing of amyloid.

The increase in Ab observed by IHC and ELISA, but lack of

evidence for alteration of amyloid processing, directed us to

investigate other mechanisms. Due to lack of change in the female

mice we elected to focus on samples from males irradiated at

100 cGy for these analyses. Microglia are principle players in CNS

inflammation, which has been proposed to be an important driver

of amyloid deposition. In addition, they are implicated in

phagocytosis and control of Ab [28]. We sought to identify if

there was a change in the association of microglia with plaques or

alterations in their level of activation that might relate to increased

plaque accumulation following radiation (Fig. 4). CD68 is

a commonly used marker that is upregulated in activated microglia

[29] and is indicative of a phagocytic state. We did not observe any

increase in CD68 area, normalized to plaque area or total Iba-1+
area, after 100 cGy radiation (Fig. 4A, B). Similarly, there was no

effect of radiation on total Iba-1+ microglia area associated with

plaques (Fig. 4C). Figure 4D contains representative images of

CD68+/Iba-1+ microglia around plaques. General microglial

morphology based on Iba-1 staining appeared similar in control

and irradiated brain (Fig. 4E). Moreover, there was no significant

change (p= .19) in cortical area covered by GFAP (Fig. 4F). To

measure the ability of microglia to degrade Ab, we quantified one

of the key enzymes associated in that process, insulin degrading

enzyme (IDE) [30] (Fig. 4G). There was no statistical difference

between the control and irradiated mice when analyzed with

a Student’s t-test (p = .22). Lastly, we investigated the amount of

the inflammatory cytokine TNFa (Fig. 4H). We did not detect any

difference between irradiated and control levels (p = .39). Taken

Space Radiation Promotes Alzheimer Pathology
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together, these results demonstrate no clear evidence of increased

glial activation 6 months after 100 cGy radiation exposure.

Due to the importance of Ab clearance out of the brain through

the BBB [20] we next examined vascular alterations in the

irradiated animals. Sections were stained with ICAM-1, a marker

of endothelial activation (Fig. 5). ICAM-1 is also thought to be an

indirect marker of CNS damage or inflammation that we have

previously demonstrated in irradiated mouse CNS [4,31]. Relative

to control tissue, a significant increase in ICAM-1 total staining

through the cortex was observed after 100 cGy radiation as judged

by Student’s t-test (p = .0031) (Fig. 5A, B). To begin to assess

transport of Ab out of the brain, levels of low-density lipoprotein

receptor-related protein 1 (LRP1) were quantified in tissue samples

by Western blot. LRP1 is a critical protein involved in binding Ab
and trafficking it out of the brain [32] that can be modulated by

peripheral inflammatory signals [33]. Even though radiation

resulted in increased endothelial activation, we did not observe

any difference in LRP1 protein level 6 months after 100 cGy 56Fe

particle irradiation (Fig. 5C).

Discussion

Here we report that GCR caused enhanced AD plaque

pathology. To our knowledge, this is the first report of radiation

being associated with enhanced plaque pathology in an AD mouse

model. In addition to disease acceleration, we observed that low

HZE doses are able to cause cognitive impairment as measured by

contextual fear conditioning and novel object recognition in APP/

PS1 tg mice (Fig. 1). While contextual fear conditioning and, to

a certain extent, novel object recognition are dependent on an intact

hippocampus, the cued tone freezing response is thought tomeasure

hippocampal independentmemory [34,35]. The lack of impairment

in tone mediated freezing demonstrates that the cognitive dysfunc-

tion we observe can be, at least in part, traced to hippocampal

mediatedmemory processes. This is consistent with other reports on

the effect of radiation impacting hippocampal dependent memory

[7,36]. Because we did not run parallel studies withwild-type control

mice, we do not know whether cognitive impairment resulted from

radiation alone or represented a synergy between radiation and

mutant AD gene expression in these mice. HZE irradiation alone

can lead to cognitive deficits in wild-typemice [7]; however, the only

report of deficits in contextual fear conditioning or novel object

recognitionwithC57BL/6 mice required 200 or 300 cGy iron [37].

Unfortunately, differences in mouse strain, timing, and radiation

beam energy limit our ability to extrapolate from these studies.

Multiple possible radiation induced effects might contribute to

cognitive dysfunction in our model. One example is a defect in

Figure 1. Effect of 56Fe particle radiation on memory and cognition using contextual fear conditioning and novel object
recognition tests. (A) Fear conditioning results quantified as percent time freezing. (B) No significant difference was found between any groups in
freezing to a novel context or a tone stimulus. (C) Novel object recognition test using the recognition index generated for time spent with the novel
object. All data is compared within the respective gender. Data was analyzed with Student’s t-test for the females and one-way ANOVA with
a Bonferroni post test for the males. Graphs show means 6 SD, n= 8–14 animals per condition at each dose. **P,.01, ***P,.001.
doi:10.1371/journal.pone.0053275.g001
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neurogenesis, which has been documented in response to traditional

radiotherapy [38] as well as exposure to 56Fe particles [5,7,39]. In

addition to neuronal proliferation defects, impaired cognition could

also result from inhibition of long-term potentiation (LTP) [40], an

effect which has been reported with 56Fe particle irradiation in the

APP23 transgenic mouse model of AD [41].

Figure 2. Immunohistochemical staining for Congo red and 6E10 increases after 56Fe particle irradiation. (A, C) Representative images
of half male brains stained for Congo red (A) or 6E10 (C) 6 months after 0 cGy or 100 cGy 56Fe particle radiation. Scale bar is 1 mm. (B, D) Quantitative
measurement of percent plaque area assessed with Congo red (B) and 6E10 (D). In addition, total number of individual 6E10 positive plaques (E) and
the average size of plaques (mm2) (F) was determined. Each dot represents a single animal measured as percent area of the cortex and hippocampus
combined. Data was analyzed with Student’s t-test for the females and one-way ANOVA with a Bonferroni post test for the males. Data displayed as
mean 6 SD, n= 8–14 animals per dose. *P,.05, **P,.01.
doi:10.1371/journal.pone.0053275.g002
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Figure 3. Radiation increases select Ab isoforms but has no effect on APP processing. Dot plot analysis of soluble Ab40 (A), Ab42 (B) and
insoluble Ab40 (C) and Ab42 (D). Each dot represents one animal. Data was analyzed with Student’s t-test for the females and one-way ANOVA with
a Bonferroni post test for the males. (E, F) Male 0 cGy and 100 cGy APP (E) and b-C terminal fragment (F) protein levels were measured via Western
blot and standardized to a-tubulin. Representative images of blots are present in E’ and F’. Results were analyzed with Student’s t-test. Data displayed
as mean 6 SD, n=8–14 animals per dose. *P,.05, **P,.01.
doi:10.1371/journal.pone.0053275.g003
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In addition to behavioral deficits, we saw enhanced Ab plaque

accumulation as judged by two different markers. 6E10 showed an

increase in total deposited Ab levels and Congo red showed an

increase in aggregation of plaques into dense fibrils. These results

were further confirmed by ELISA data (Fig. 3). Ab plaque staining

is used to gauge progression and stage AD pathology [12]. The

increases observed in soluble Ab and insoluble plaque deposition

suggest that GCR caused more rapid progression of AD, at least

for male mice. The female group was sacrificed at an earlier age

than the male mice due to concerns related to several female mice

dying early. Given the small number that died, we do not know

whether this was related to radiation; our goal was to have a large

enough cohort for behavioral and tissue analysis. Thus the male

and female groups are not comparable. Moreover, APP/PS1

Figure 4. There is no change in glial activation after 56Fe particle irradiation. (A) CD68 area was normalized to individual plaque area to
account for differences in plaque size. 12 plaques in each mouse were analyzed and averaged together to compare male control and 100 cGy
irradiated mice. (B) CD68 was also normalized to the total Iba-1 microglia area around the plaque to account for potential changes in microglia
number. (C) Iba-1 area was standardized to plaque area. Each dot represents a single animal. (D) Visual representation of CD68/Iba-1 staining around
a plaque. Images acquired at 40x magnification, scale bar is 5 mm. (E) Representative hippocampal images taken to demonstrate Iba-1+ microglial
morphology. Images acquired at 20x magnification, scale bar is 10 mm. (F) Astrocyte activation was measured using GFAP percent area
measurements in the cortex (n= 4–5 mice per dose). (G) Insulin Degrading Enzyme (IDE) protein level was measured and quantified via Western blot
analysis. IDE levels were normalized against a-tubulin as a loading control (n= 7 mice per dose). Representative images are shown in G’. (H) Protein
levels of TNFa were quantified via ELISA. Data is presented as mean6 SD. The results were analysed with Student’s t test, n= 13–14 mice per dose in
A, B, C and H.
doi:10.1371/journal.pone.0053275.g004
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female mice are known to have different plaque dynamics then

males [42]; therefore it is not possible to draw specific conclusions

on gender difference of 56Fe particle radiation.

The doses used in this study are comparable to those astronauts

will see on a mission to Mars [2,3], raising concerns about

a heightened chance of debilitating dementia occurring long after

the mission is over. Increased plaque progression could be due to

a variety of mechanisms. A primary mechanism of radiation injury

is DNA damage and reactive oxygen species production [38,43]

that can contribute to overall cell dysfunction. In addition,

radiation is also known to cause glial activation and inflammatory

cytokine production [4], both of which have been implicated in

neurodegenerative diseases like AD [44]. In our study, GCR

exposure could amplify the chronic inflammatory AD state and

speed up pathology. However, we did not find clear evidence of

neuroinflammation using markers previously shown to be elevated

using higher doses of gamma and HZE irradiation [4,5,45].

However, subtle inflammatory changes could be occurring that we

were not able to visualize by conventional immunohistochemical

methods. Additionally, investigators have shown there is a biphasic

pattern of inflammatory cytokines over several months after

irradiation [4,45], suggesting the possibility that significant

changes at another time point might have been missed. Indeed,

Encinas et al. observed accumulation of Iba1+ microglia in the

hippocampal subgranular zone 6 h post 100 cGy 56Fe radiation

exposure. This effect was not seen 24 h or 3 weeks after irradiation

[46]. This observation is consistent with microglial reaction to

hippocampal neural precursor cells undergoing apoptosis in

response to radiation [47], and suggests that neuroinflammation

might occur in our model at an acute time point.

Microglia have been implicated in plaque maintenance in

a number of models [28,44,48,49]. Although radiation induced

changes in microglia might result in increased plaque deposition,

we did not find alteration in several measures related to microglial

function. Moreover, we observed no increase in the Ab degrading

enzyme IDE as pathology worsens after 100 cGy irradiation

(Fig. 4F). IDE is an enzyme that is present in several CNS cell

types [30]. Importantly, it is thought that microglia can secrete it

to degrade extracellular Ab [50]. One could argue that the lack of

increased IDE is a significant finding since it would be expected

that as pathology worsens, there should be an upregulated

response. It is important to note that IDE is not the only protease

implicated in Ab degradation. Other proteases like neprilysin or

MMP9 could potentially be involved [30].

An additional hypothesis is that radiation causes vascular

defects, which impair proper clearance of Ab. Clearance through

the vasculature has been shown to be crucial [20] and alterations

by various means can result in increased pathology [33]. Radiation

Figure 5. 56Fe particle radiation causes endothelial activation. (A) Representative images of ICAM-1 staining. Pictures are at 20x magnification
and the scale bar is 10 mm. (B) ICAM-1 area was measured as percent total area in the entire cortex in 2 serial sections with the results being averaged
together. Each dot represents a single animal. (C) Protein samples were analyzed for LRP1 using Western blot. LRP1 levels were standarized against a-
tubulin as a loading control. Representative immunoblot image is present in C’. Data is presented as mean 6 SD. Results were analysed with
a Student’s t-test. n=13–14 animals per dose.
doi:10.1371/journal.pone.0053275.g005
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led to increased ICAM-1 staining and vascular dysfunction,

including increased permeability [4,31,51]. We found significant

increases in ICAM-1 staining in male mice 6 months after

exposure to 100 cGy 56Fe particles (Fig. 5). It is tempting to

speculate that radiation-induced vascular changes alter the

transport of Ab out of the brain. Even though we did not observe

any change in LRP1, which is associated with Ab removal from

the brain and known to be influenced by inflammatory stimuli

[33], there are additional transporters found at the BBB that might

have a role in Ab removal [20]. Ultimately, Ab tracer studies will

be required to definitively demonstrate impaired clearance in

irradiated mice.

In conclusion we have demonstrated that 100 cGy of 56Fe

particle radiation can cause cognitive impairment as well as

increased Ab plaque pathology in APP/PS1 mice, without clear

changes in glial activation. Additionally, the elevation of ICAM-1

expression in irradiated mice raises the possibility that vascular

changes might underlie radiation-induced amyloid accumulation.

These pathological increases are particularly concerning for

astronauts who will be exposed to GCR in upcoming deep space

missions. In this regard, one major caveat of our model is that

mice were subjected to acute exposures with a single HZE species.

It is not known how the CNS will respond to the complex and

chronic low-dose GCR environment of space. Moreover, astro-

nauts will not likely be familial AD carriers. Therefore, while many

of the pathological processes are believed to be similar, this model

does not reflect the complete human condition. However, for the

one aspect we can replicate, the accumulation of Ab, our findings
demonstrate that whole body exposure to 56Fe particle HZE

radiation enhances pathological processes associated with pro-

gression of AD.

Acknowledgments

The authors thank Peter Guida, Adam Rusek, and their teams at

Brookhaven National Laboratories for support during mouse irradiations.

Jack Walter, Mallory Olschowka, and Lee Trojanczyk assisted with

irradiations, animal management, contextual fear conditioning, and tissue

collection and processing. We thank Katherine Bachmann in the

University of Rochester Behavioral Science Facility Core (supported in

part by P30 ES01247) for running the novel object recognition test.

Author Contributions

Conceived and designed the experiments: JDC CAL JPW JAO MKO.

Performed the experiments: JDC BL JLF JPW MKO. Analyzed the data:

JDC JAO MKO. Contributed reagents/materials/analysis tools: BL JLF

CAL. Wrote the paper: JDC MKO.

References

1. Hellweg CE, Baumstark-Khan C (2007) Getting ready for the manned mission

to Mars: the astronauts’ risk from space radiation. Naturwissenschaften 94: 517–

526.

2. Nelson GA (2003) Fundamental space radiobiology. Gravit Space Biol Bull 16:

29–36.

3. Cucinotta FA, Durante M (2006) Cancer risk from exposure to galactic cosmic

rays: implications for space exploration by human beings. Lancet Oncol 7: 431–

435.

4. Moravan MJ, Olschowka JA, Williams JP, O’Banion MK (2011) Cranial

irradiation leads to acute and persistent neuroinflammation with delayed

increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain.

Radiat Res 176: 459–473.

5. Rola R, Sarkissian V, Obenaus A, Nelson GA, Otsuka S, et al. (2005) High-LET

radiation induces inammation and persistent changes in markers of hippocampal

neurogenesis. Radiat Res 164: 556–560.

6. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous

system. J Clin Invest 122: 1164–1171.

7. Britten RA, Davis LK, Johnson AM, Keeney S, Siegel A, et al. (2012) Low

(20 cGy) doses of 1 GeV/m (56)Fe–particle radiation lead to a persistent

reduction in the spatial learning ability of rats. Radiat Res 177: 146–151.

8. Alzheimer’s Association (2012) 2012 Alzheimer’s disease facts and figures.

Alzheimer’s & Dementia 8: 131–168.

9. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, et al. (2012) A

mutation in APP protects against Alzheimer’s disease and age-related cognitive

decline. Nature 488: 96–99.

10. McGeer EG, McGeer PL (2003) Inflammatory processes in Alzheimer’s disease.

Prog Neuropsychopharmacol Biol Psychiatry 27: 741–749.

11. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis

for Alzheimer’s disease: an appraisal for the development of therapeutics. Nature

Rev Drug Discov 10: 698–712.

12. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related

changes. Acta Neuropathologica 82: 239–259.

13. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, et al. (2004) Imaging

brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol

55: 306–319.

14. Chakrabarty P, Herring A, Ceballos-Diaz C, Das P, Golde TE (2011)

Hippocampal expression of murine TNFalpha results in attenuation of amyloid

deposition in vivo. Mol Neurodegener 6: 16.

15. Kawahara K, Suenobu M, Yoshida A, Koga K, Hyodo A, et al. (2012)

Intracerebral microinjection of interleukin-4/interleukin-13 reduces beta-

amyloid accumulation in the ipsilateral side and improves cognitive deficits in

young amyloid precursor protein 23 mice. Neuroscience 207: 243–260.

16. Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, et al. (2007)

Sustained hippocampal IL-1 beta overexpression mediates chronic neuroin-

flammation and ameliorates Alzheimer plaque pathology. J Clin Invest 117:

1595–1604.

17. Kahn MS, Kranjac D, Alonzo CA, Haase JH, Cedillos RO, et al. (2012)

Prolonged elevation in hippocampal Abeta and cognitive deficits following

repeated endotoxin exposure in the mouse. Behav Brain Res 229: 176–184.

18. Kyrkanides S, Tallents RH, Miller JN, Olschowka ME, Johnson R, et al. (2011)

Osteoarthritis accelerates and exacerbates Alzheimer’s disease pathology in

mice. J Neuroinflammation 8: 112.

19. Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, et al. (2012) Systemic

immune challenges trigger and drive Alzheimer-like neuropathology in mice.

J Neuroinflammation 9: 151.

20. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzhei-

mer’s disease and other disorders. Nature Rev Neurosci 12: 723–738.

21. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, et al. (2011) Human

apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci

Transl Med 3: 89ra57.

22. Wilson CM, Gaber MW, Sabek OM, Zawaski JA, Merchant TE (2009)

Radiation-induced astrogliosis and blood-brain barrier damage can be

abrogated using anti-TNF treatment. Int J Radiat Oncol Biol Phys 74: 934–941.

23. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, et al. (2004) Mutant

presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in

vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol

Genet 13: 159–170.

24. Reiserer RS, Harrison FE, Syverud DC, McDonald MP (2007) Impaired spatial

learning in the APPSwe + PSEN1DeltaE9 bigenic mouse model of Alzheimer’s

disease. Genes Brain Behav 6: 54–65.

25. Hein AM, Zarcone TJ, Parfitt DB, Matousek SB, Carbonari DM, et al. (2012)

Behavioral, structural and molecular changes following long-term hippocampal

IL-1beta overexpression in transgenic mice. J Neuroimmune Pharmacol 7: 145–

155.

26. Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology,

neuroanatomy and neurogenetics of one-trial object recognition in rodents.

Neurosci Biobehav Rev 31: 673–704.

27. Matousek SB, Ghosh S, Shaftel SS, Kyrkanides S, Olschowka JA, et al. (2011)

Chronic IL-1beta-mediated neuroinflammation mitigates amyloid pathology in

a mouse model of Alzheimer’s disease without inducing overt neurodegenera-

tion. J Neuroimmune Pharmacol 7: 156–164.

28. Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, et al. (2008) Dynamics of

the microglial/amyloid interaction indicate a role in plaque maintenance.

J Neurosci 28: 4283–4292.

29. Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, et al. (2010) CX3CR1

deficiency alters microglial activation and reduces beta-amyloid deposition in

two Alzheimer’s disease mouse models. Am J Pathol 177: 2549–2562.

30. Miners JS, Barua N, Kehoe PG, Gill S, Love S (2011) Abeta-degrading enzymes:

potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol 70:

944–959.

31. Olschowka JA, Kyrkanides S, Harvey BK, O’Banion MK, Williams JP, et al.

(1997) ICAM-1 induction in the mouse CNS following irradiation. Brain Beh

Immun 11: 273–285.

32. Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA (2010) Low-density

lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism

controlling Alzheimer’s amyloid beta-peptide elimination from the brain.

J Neurochem 115: 1077–1089.

33. Erickson MA, Hartvigson PE, Morofuji Y, Owen JB, Butterfield DA, et al.

(2012) Lipopolysaccharide impairs amyloid beta efflux from brain: altered

Space Radiation Promotes Alzheimer Pathology

PLOS ONE | www.plosone.org 9 December 2012 | Volume 7 | Issue 12 | e53275



vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance

and transporter function at the blood-brain barrier. J Neuroinflammation 9: 150.

34. Hein AM, Stasko MR, Matousek SB, Scott-McKean JJ, Maier SF, et al. (2010)

Sustained hippocampal IL-1beta overexpression impairs contextual and spatial

memory in transgenic mice. Brain Beh Immun 24: 243–253.

35. Clark RE, Zola SM, Squire LR (2000) Impaired recognition memory in rats

after damage to the hippocampus. J Neurosci 20: 8853–8860.

36. Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, et al. (2004) Radiation-

induced impairment of hippocampal neurogenesis is associated with cognitive

deficits in young mice. Exp Neurol 188: 316–330.

37. Villasana L, Rosenberg J, Raber J (2010) Sex-dependent effects of 56Fe

irradiation on contextual fear conditioning in C57BL/6J mice. Hippocampus

20: 19–23.

38. Fike JR, Rosi S, Limoli CL (2009) Neural precursor cells and central nervous

system radiation sensitivity. Sem Rad Oncol 19: 122–132.

39. Vlkolinsky R, Krucker T, Nelson GA, Obenaus A (2008) (56)Fe-particle

radiation reduces neuronal output and attenuates lipopolysaccharide-induced

inhibition of long-term potentiation in the mouse hippocampus. Radiat Res 169:

523–530.

40. Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function:

plasticity, network dynamics, and cognition. Prog Neurobiol 69: 143–179.

41. Vlkolinsky R, Titova E, Krucker T, Chi BB, Staufenbiel M, et al. (2010)

Exposure to 56Fe-particle radiation accelerates electrophysiological alterations in

the hippocampus of APP23 transgenic mice. Radiat Res 173: 342–352.

42. Wang J, Tanila H, Puolivali J, Kadish I, van Groen T (2003) Gender differences

in the amount and deposition of amyloid in APPswe and PS1 double transgenic

mice. Neurobiol Dis 14: 318–327.

43. Rydberg B (1996) Clusters of DNA damage induced by ionizing radiation-

formation of short DNA fragments. II. Experimental detection. Radiat Res 145:
200–209.

44. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms

underlying inflammation in neurodegeneration. Cell 140: 918–934.
45. Chiang CS, Hong JH, Stalder A, Sun JR, Withers HR, et al. (1997) Delayed

molecular responses to brain irradiation. Intl J Radiat Oncol Biol Phys 72: 45–
53.

46. Encinas JM, Vazquez ME, Switzer RC, Chamberland DW, Nick H, et al. (2008)

Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation.
Exp Neurol 210: 274–279.

47. Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. (2003)
Extreme senstitivity of adult neurogenesis to low doses of x-irradiation. Cancer

Res 63: 4021–4027.
48. Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, et al. (2006)

Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like

microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A 103:
11784–11789.

49. Fu H, Liu B, Frost JL, Hong S, Jin M, et al. (2012) Complement component C3
and complement receptor type 3 contribute to the phagocytosis and clearance of

fibrillar Abeta by microglia. Glia 60: 993–1003.

50. Tamboli IY, Barth E, Christian L, Siepmann M, Kumar S, et al. (2010) Statins
promote the degradation of extracellular amyloid {beta}-peptide by microglia

via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion.
J Biol Chem 285: 37405–37414.

51. Yuan H, Gaber MW, Boyd K, Wilson CM, Kiani MF, et al. (2006) Effects of
fractionated radiation on the brain vasculature in a murine model: blood-brain

barrier permeability, astrocyte proliferation, and ultrastructural changes.

Intl J Radiat Oncol Biol Phys 66: 860–866.

Space Radiation Promotes Alzheimer Pathology

PLOS ONE | www.plosone.org 10 December 2012 | Volume 7 | Issue 12 | e53275


