1,292 research outputs found
New magnetic-resonance-imaging-visible poly(epsilon-caprolactone)-based polyester for biomedical applications
A great deal of effort has been made since the 1990s to enlarge the field of magnetic resonance imaging. Better tissue contrast, more biocompatible contrast agents and the absence of any radiation for the patient are some of the many advantages of using magnetic resonance imaging (MRI) rather than X-ray technology. But implantable medical devices cannot be visualized by conventional MRI and a tool therefore needs to be developed to rectify this. The synthesis of a new MRI-visible degradable polymer is described by grafting an MR contrast agent (DTPA-Gd) to a non-water-soluble, biocompatible and degradable poly(epsilon-caprolactone) (PCL). The substitution degree, calculated by H-1 nuclear magnetic resonance and inductively coupled plasma-mass spectrometry, is close to 0.5% and proves to be sufficient to provide a strong and clear T1 contrast enhancement. This new MRI-visible polymer was coated onto a commercial mesh for tissue reinforcement using an airbrush system and enabled in vitro MR visualization of the mesh for at least 1 year. A stability study of the DTPA-Gd-PCL chelate in phosphate-buffered saline showed that a very low amount of gadolinium was released into the medium over 52 weeks, guaranteeing the safety of the device. This study shows that this new MRI-visible polymer has great potential for the MR visualization of implantable medical devices and therefore the post-operative management of patients. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved
Role of Grasslands and Grassland Management for Biogeochemical Cycles and Biodiversity. Setting up Long-Term Manipulation Experiments in France
Land use for grassland is recognised to have some beneficial effects for biodiversity and the environment: (i) regulation of the water cycle and protection of soils against erosion, (ii) accumulation of organic matter in soil and sequestration of atmospheric C, (iii) regulation of the N cycle and attenuation of the risk for N leaching, (iv) recycling of nutrients and improvement of soil quality, (v) improvement of biodiversity of vegetation, soil microbes and micro- and meso-fauna. All these effects depend upon the management of the grassland: cutting vs. grazing, stocking density, level of N inputs. Management decisions often result from short- term objectives, whereas the soil-vegetation interactions are long-term processes. Therefore, a steady state is usually not reached, which makes it difficult to determine the overall environmental effects of changes in land use and in grassland management
Permanent Polymer Coating for in vivo MRI Visualization of Tissue Reinforcement Prostheses
The clinical advantage of MRI visualization of prostheses in soft tissue prolapses is very appealing as over 1?000?000 MRI-transparent synthetic meshes are implanted annually, and postoperative complications such as mesh shrinkage and migration are frequent. Here, the synthesis of a new material composed of a DTPA-Gd complex grafted onto a backbone of PMA via a covalent bond is described (DTPA-Gd-PMA). This new polymer is sprayed onto meshes and gives an MR signal for a long period without any significant release of Gd. In vitro cytocompatibility tests on fibroblasts show limited cytotoxicity. Microscopic investigations indicate that vital cells rapidly colonize the material. Finally, coated meshes implanted in rats are easily recognizable using an MR imaging system
MR Chemical engineering of polymer for medical devices visualization.
International audienc
Spatial Separation of the 3.29 micron Emission Feature and Associated 2 micron Continuum in NGC 7023
We present a new 0.9" resolution 3.29 micron narrowband image of the
reflection nebula NGC 7023. We find that the 3.29 micron IEF in NGC 7023 is
brightest in narrow filaments NW of the illuminating star. These filaments have
been seen in images of K', molecular hydrogen emission lines, the 6.2 and 11.3
micron IEFs, and HCO+. We also detect 3.29 micron emission faintly but
distinctly between the filaments and the star. The 3.29 micron image is in
contrast to narrowband images at 2.09, 2.14, and 2.18 micron, which show an
extended emission peak midway between the filaments and the star, and much
fainter emission near the filaments. The [2.18]-[3.29] color shows a wide
variation, ranging from 3.4-3.6 mag at the 2 micron continuum peak to 5.5 mag
in the filaments. We observe [2.18]-[3.29] to increase smoothly with increasing
distance from the star, up until the filament, suggesting that the main
difference between the spatial distributions of the 2 micron continuum and the
the 3.29 micron emission is related to the incident stellar flux. Our result
suggests that the 3.29 micron IEF carriers are likely to be distinct from, but
related to, the 2 micron continuum emitters. Our finding also imply that, in
NGC 7023, the 2 micron continuum emitters are mainly associated with HI, while
the 3.29 micron IEF carriers are primarily found in warm molecular hydrogen,
but that both can survive in HI or molecular hydrogen. (abridged)Comment: to appear in ApJ, including 1 table and 8 figures, high resolution
figures available at http://www.ast.cam.ac.uk/~jin/n7023
The Minimal Supersymmetric Standard Model: Group Summary Report
CONTENTS: 1. Synopsis, 2. The MSSM Spectrum, 3. The Physical Parameters, 4.
Higgs Boson Production and Decays, 5. SUSY Particle Production and Decays, 6.
Experimental Bounds on SUSY Particle Masses, 7. References.Comment: 121 pages, latex + epsfig, graphicx, axodraw, Report of the MSSM
working group for the Workshop "GDR-Supersym\'etrie",France. Rep. PM/98-4
Conception de prothèse visible en IRM pour la prise en charge chirurgicale des prolapsus génitaux et des hernies abdominales
National audienc
Silicon Nanoparticles: Source of Extended Red Emission?
We have reviewed the characteristics of the extended red emission (ERE) as
observed in many dusty astronomical environments, in particular, the diffuse
interstellar medium of the Galaxy. The spectral nature and the photon
conversion efficiency of the ERE identify the underlying process as highly
efficient photoluminescence by an abundant component of interstellar dust. We
have compared the photoluminescence properties of a variety of carbon- and
silicon-based materials proposed as sources for the ERE with the
observationally established constraints. We found that silicon nanoparticles
provide the best match to the spectrum and the efficiency requirement of the
ERE. If present in interstellar space with an abundance sufficient to explain
the intensity of the ERE, silicon nanoparticles will also contribute to the
interstellar 9.7 micron Si-O stretch feature in absorption, to the near- and
mid-IR nonequilibrium thermal background radiation, and to the continuum
extinction in the near- and far-UV. About 36% of the interstellar silicon
depleted into the dust phase would be needed in the form of silicon
nanoparticles, amounting to less than 5% of the interstellar dust mass. We
propose that silicon nanoparticles form through the nucleation of SiO in
oxygen-rich stellar mass outflows and that they represent an important
small-grain component of the interstellar dust spectrum.Comment: 5 pages; 1 included figure; accepted 1998 May 1, ApJ
- …