20 research outputs found

    КИХ-фильтры с независимым управлением фазочастотной характеристикой

    Get PDF
    Рассматривается структурная реализация цифровых КИХ фильтров методом частотной выборки с возможностью управления фазочастотной характеристикой в реальном времени. Приводятся характеристики элементарных цифровых фильтров, алгоритм сложения их выходных сигналов и способ смещения фазочастотной характеристики.Розглядається проектування та структурна реалізація цифрових КІХ-фільтрів методом частотної вибірки з можливістю управління фазочастотною характеристикою в реальному часі. Наводяться характеристики елементарних цифрових фільтрів, алгоритм складання їх вихідних сигналів і спосіб зміщення фазочастотної характеристики.The structural realization of digital FIR-filters using frequency sampling with real time control of phase-frequency characteristic is considered. The characteristics of elementary digital filters, the algorithm of their output signals summation and the way of phase-frequency characteristic shift are given

    Discovery of Small Molecules That Induce Lysosomal Cell Death in Cancer Cell Lines Using an Image-Based Screening Platform

    No full text
    The lysosomal cell death (LCD) pathway is a caspase 3-independent cell death pathway that has been suggested as a possible target for cancer therapy, making the development of sensitive and specific high-throughput (HT) assays to identify LCD inducers highly desirable. In this study, we report a two-step HT screening platform to reliably identify such molecules. First, using a robust HT primary screen based on propidium iodide uptake, we identified compounds that kill through nonapoptotic pathways. A phenotypic image-based assay using a galectin-3 (Gal-3) reporter was then used to further classify hits based on lysosomal permeabilization, a hallmark of LCD. The identification of permeabilized lysosomes in our image-based assay is not affected by changes in the lysosomal pH, thus resolving an important limitation in currently used methods. We have validated our platform in a screen by identifying 24 LCD inducers, some previously known to induce LCD. Although most LCD inducers were cationic amphiphilic drugs (CADs), we have also identified a non-CAD LCD inducer, which is of great interest in the field. Our data also gave new insights into the biology of LCD, suggesting that lysosomal accumulation and acid sphingomyelinase inhibition are not sufficient or necessary for the induction of LCD. Overall, our results demonstrate a robust HT platform to identify novel LCD inducers that will also be very useful for gaining deeper insights into the molecular mechanism of LCD induction

    Epigenetic drug screen identifies the histone deacetylase inhibitor NSC3852 as a potential novel drug for the treatment of pediatric acute myeloid leukemia

    No full text
    BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease regarding morphology, immunophenotyping, genetic abnormalities, and clinical behavior. The overall survival rate of pediatric AML is 60% to 70%, and has not significantly improved over the past two decades. Children with Down syndrome (DS) are at risk of developing acute megakaryoblastic leukemia (AMKL), which can be preceded by a transient myeloproliferative disorder during the neonatal period. Intensification of current treatment protocols is not feasible due to already high treatment-related morbidity and mortality. Instead, more targeted therapies with less severe side effects are highly needed. PROCEDURE: To identify potential novel therapeutic targets for myeloid disorders in children, including DS-AMKL and non-DS-AML, we performed an unbiased compound screen of 80 small molecules targeting epigenetic regulators in three pediatric AML cell lines that are representative for different subtypes of pediatric AML. Three candidate compounds were validated and further evaluated in normal myeloid precursor cells during neutrophil differentiation and in (pre-)leukemic pediatric patient cells. RESULTS: Candidate drugs LMK235, NSC3852, and bromosporine were effective in all tested pediatric AML cell lines with antiproliferative, proapoptotic, and differentiation effects. Out of these three compounds, the pan-histone deacetylase inhibitor NSC3852 specifically induced growth arrest and apoptosis in pediatric AML cells, without disrupting normal neutrophil differentiation. CONCLUSION: NSC3852 is a potential candidate drug for further preclinical testing in pediatric AML and DS-AMKL

    Genome-wide RNAi screen for synthetic lethal interactions with the C. elegans kinesin-5 homolog BMK-1

    No full text
    Kinesins are a superfamily of microtubule-based molecular motors that perform various transport needs and have essential roles in cell division. Among these, the kinesin-5 family has been shown to play a major role in the formation and maintenance of the bipolar mitotic spindle. Moreover, recent work suggests that kinesin-5 motors may have additional roles. In contrast to most model organisms, the sole kinesin-5 gene in Caenorhabditis elegans, bmk-1, is not required for successful mitosis and animals lacking bmk-1 are viable and fertile. To gain insight into factors that may act redundantly with BMK-1 in spindle assembly and to identify possible additional cellular pathways involving BMK-1, we performed a synthetic lethal screen using the bmk-1 deletion allele ok391. We successfully knocked down 82% of the C. elegans genome using RNAi and assayed viability in bmk-1(ok391) and wild type strains using an automated high-throughput approach based on fluorescence microscopy. The dataset includes a final list of 37 synthetic lethal interactions whose further study is likely to provide insight into kinesin-5 function

    The glucocorticoid mometasone furoate is a novel FXR ligand that decreases inflammatory but not metabolic gene expression

    No full text
    The Farnesoid X receptor (FXR) regulates bile salt, glucose and cholesterol homeostasis by binding to DNA response elements, thereby activating gene expression (direct transactivation). FXR also inhibits the immune response via tethering to NF-κ B (tethering transrepression). FXR activation therefore has therapeutic potential for liver and intestinal inflammatory diseases. We aim to identify and develop gene-selective FXR modulators, which repress inflammation, but do not interfere with its metabolic capacity. In a high-throughput reporter-based screen, mometasone furoate (MF) was identified as a compound that reduced NF-κ B reporter activity in an FXR-dependent manner. MF reduced mRNA expression of pro-inflammatory cytokines, and induction of direct FXR target genes in HepG2-GFP-FXR cells and intestinal organoids was minor. Computational studies disclosed three putative binding modes of the compound within the ligand binding domain of the receptor. Interestingly, mutation of W469A residue within the FXR ligand binding domain abrogated the decrease in NF-κ B activity. Finally, we show that MF-bound FXR inhibits NF-κ B subunit p65 recruitment to the DNA of pro-inflammatory genes CXCL2 and IL8. Although MF is not suitable as selective anti-inflammatory FXR ligand due to nanomolar affinity for the glucocorticoid receptor, we show that separation between metabolic and anti-inflammatory functions of FXR can be achieved

    Aurora A, MCAK, and Kif18b promote Eg5-independent spindle formation

    No full text
    Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment with Eg5 inhibitors. To identify essential components for Eg5-independent bipolar spindle formation, we performed a genome-wide siRNA screen in Eg5-independent cells (EICs). We find that the kinase Aurora A and two kinesins, MCAK and Kif18b, are essential for bipolar spindle assembly in EICs and in cells with reduced Eg5 activity. Aurora A promotes bipolar spindle assembly by phosphorylating Kif15, hereby promoting Kif15 localization to the spindle. In turn, MCAK and Kif18b promote bipolar spindle assembly by destabilizing the astral MTs. One attractive way to interpret our data is that, in the absence of MCAK and Kif18b, excessive astral MTs generate inward pushing forces on centrosomes at the cortex that inhibit centrosome separation. Together, these data suggest a novel function for astral MTs in force generation on spindle poles and how proteins involved in regulating microtubule length can contribute to bipolar spindle assembly

    An image-based miRNA screen identifies miRNA-135s as regulators of CNS axon growth and regeneration by targeting krüppel-like factor 4

    No full text
    During embryonic development, axons extend over long distances to establish functional connections. In contrast, axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing CNS regeneration. Here, we performed one of the first miRNome-wide functional miRNA screens to identify miRNAs with robust effects on axon growth. High-content screening identified miR-135a and miR-135b as potent stimulators of axon growth and cortical neuron migration in vitro and in vivo in male and female mice. Intriguingly, both of these developmental effects of miR-135s relied in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon growth and regeneration. These results prompted us to test the effect of miR-135s on axon regeneration after injury. Our results show that intravitreal application of miR-135s facilitates retinal ganglion cell (RGC) axon regeneration after optic nerve injury in adult mice in part by repressing KLF4. In contrast, depletion of miR-135s further reduced RGC axon regeneration. Together, these data identify a novel neuronal role for miR-135s and the miR-135–KLF4 pathway and highlight the potential of miRNAs as tools for enhancing CNS axon regeneration

    Data Record 1: Primary dsRNA screen data

    No full text
    <p>Primary dsRNA screen data are contained in tabs termed Controls (negative and positive controls), Samples (RNAi vectors) and ND Samples (targeting sequences for which an RFratio could not be determined for technical reasons). The tab termed “Selection 2nd Screen” contains all the targeting sequences taken to the secondary screen and respective location coordinates in the arrayed hit plates (1-13).</p

    HC StratoMineR : A Web-Based Tool for the Rapid Analysis of High-Content Datasets

    No full text
    High-content screening (HCS) can generate large multidimensional datasets and when aligned with the appropriate data mining tools, it can yield valuable insights into the mechanism of action of bioactive molecules. However, easy-to-use data mining tools are not widely available, with the result that these datasets are frequently underutilized. Here, we present HC StratoMineR, a web-based tool for high-content data analysis. It is a decision-supportive platform that guides even non-expert users through a high-content data analysis workflow. HC StratoMineR is built by using My Structured Query Language for storage and querying, PHP: Hypertext Preprocessor as the main programming language, and jQuery for additional user interface functionality. R is used for statistical calculations, logic and data visualizations. Furthermore, C++ and graphical processor unit power is diffusely embedded in R by using the rcpp and rpud libraries for operations that are computationally highly intensive. We show that we can use HC StratoMineR for the analysis of multivariate data from a high-content siRNA knock-down screen and a small-molecule screen. It can be used to rapidly filter out undesirable data; to select relevant data; and to perform quality control, data reduction, data exploration, morphological hit picking, and data clustering. Our results demonstrate that HC StratoMineR can be used to functionally categorize HCS hits and, thus, provide valuable information for hit prioritization

    HC StratoMineR : A Web-Based Tool for the Rapid Analysis of High-Content Datasets

    No full text
    High-content screening (HCS) can generate large multidimensional datasets and when aligned with the appropriate data mining tools, it can yield valuable insights into the mechanism of action of bioactive molecules. However, easy-to-use data mining tools are not widely available, with the result that these datasets are frequently underutilized. Here, we present HC StratoMineR, a web-based tool for high-content data analysis. It is a decision-supportive platform that guides even non-expert users through a high-content data analysis workflow. HC StratoMineR is built by using My Structured Query Language for storage and querying, PHP: Hypertext Preprocessor as the main programming language, and jQuery for additional user interface functionality. R is used for statistical calculations, logic and data visualizations. Furthermore, C++ and graphical processor unit power is diffusely embedded in R by using the rcpp and rpud libraries for operations that are computationally highly intensive. We show that we can use HC StratoMineR for the analysis of multivariate data from a high-content siRNA knock-down screen and a small-molecule screen. It can be used to rapidly filter out undesirable data; to select relevant data; and to perform quality control, data reduction, data exploration, morphological hit picking, and data clustering. Our results demonstrate that HC StratoMineR can be used to functionally categorize HCS hits and, thus, provide valuable information for hit prioritization
    corecore